261 research outputs found
Social Semiotics: Theorising Meaning Making
This chapter outlines a theoretical framework to account for practices of meaning making in health care and sets out an agenda for clinical educational research. It shows how meaning making pervades all aspects of clinical work and how it can be explored and made explicit within a framework derived from social semiotics. The chapter illustrates how the framework produces accounts of the ways in which clinicians make sense of and interact with the world, in situations where they give, review, and imagine care. It explores how clinicians interpret, and communicate through, human bodies, tools, and technologies, giving meaning to, and expressing meaning through, distinct material forms. In so doing, the chapter begins to render visible the semiotic skills that clinicians develop to prepare for, provide, and evaluate clinical care
A Bio-Logical Theory of Animal Learning
This article provides the foundation for a new predictive theory of animal learning that is based upon a simple logical model. The knowledge of experimental subjects at a given time is described using logical equations. These logical equations are then used to predict a subject’s response when presented with a known or a previously unknown situation. This new theory suc- cessfully anticipates phenomena that existing theories predict, as well as phenomena that they cannot. It provides a theoretical account for phenomena that are beyond the domain of existing models, such as extinction and the detection of novelty, from which “external inhibition” can be explained. Examples of the methods applied to make predictions are given using previously published results. The present theory proposes a new way to envision the minimal functions of the nervous system, and provides possible new insights into the way that brains ultimately create and use knowledge about the world
On Wayfaring in Social Machines
In this paper, we concern ourselves with the ways in which humans inhabit social machines: the structures and techniques which allow the enmeshing of multiple life traces within the flow of online interaction. In particular, we explore the distinction between transport and journeying, between networks and meshworks, and the different attitudes and modes of being appropriate to each. By doing this, we hope to capture a part of the sociality of social machines, to build an understanding of the ways in which lived lives relate to digital structures, and the emergence of the communality of shared work. In order to illustrate these ideas, we look at several aspects of existing social machines, and tease apart the qualities which relate to the different modes of being. The distinctions and concepts outlined here provide another element in both the analysis and development of social machines, understanding how people may joyfully and directedly engage with collective activities on the web
Acquisition of aluminium tolerance by modification of a single gene in barley
Originating from the Fertile Crescent in the Middle East, barley has now been cultivated widely on different soil types including acid soils, where aluminium toxicity is a major limiting factor. Here we show that the adaptation of barley to acid soils is achieved by the modification of a single gene (HvAACT1) encoding a citrate transporter. We find that the primary function of this protein is to release citrate from the root pericycle cells to the xylem to facilitate the translocation of iron from roots to shoots. However, a 1-kb insertion in the upstream of the HvAACT1 coding region occurring only in the Al-tolerant accessions, enhances its expression and alters the location of expression to the root tips. The altered HvAACT1 has an important role in detoxifying aluminium by secreting citrate to the rhizosphere. Thus, the insertion of a 1-kb sequence in the HvAACT1 upstream enables barley to adapt to acidic soils
Outline of a sensory-motor perspective on intrinsically moral agents
This is the accepted version of the following article: Christian Balkenius, Lola Cañamero, Philip Pärnamets, Birger Johansson, Martin V Butz, and Andreas Olson, ‘Outline of a sensory-motor perspective on intrinsically moral agents’, Adaptive Behaviour, Vol 24(5): 306-319, October 2016, which has been published in final form at DOI: https://doi.org/10.1177/1059712316667203 Published by SAGE ©The Author(s) 2016We propose that moral behaviour of artificial agents could (and should) be intrinsically grounded in their own sensory-motor experiences. Such an ability depends critically on seven types of competencies. First, intrinsic morality should be grounded in the internal values of the robot arising from its physiology and embodiment. Second, the moral principles of robots should develop through their interactions with the environment and with other agents. Third, we claim that the dynamics of moral (or social) emotions closely follows that of other non-social emotions used in valuation and decision making. Fourth, we explain how moral emotions can be learned from the observation of others. Fifth, we argue that to assess social interaction, a robot should be able to learn about and understand responsibility and causation. Sixth, we explain how mechanisms that can learn the consequences of actions are necessary for a robot to make moral decisions. Seventh, we describe how the moral evaluation mechanisms outlined can be extended to situations where a robot should understand the goals of others. Finally, we argue that these competencies lay the foundation for robots that can feel guilt, shame and pride, that have compassion and that know how to assign responsibility and blame.Peer reviewedFinal Accepted Versio
Bio-Geo-Graphy: Landscape, Dwelling, and the Political Ecology of Human-Elephant Relations
The relation between the bio and the geo has been amongst geography's most enduring concerns. This paper contributes to ongoing attempts in human geography to politicise the dynamics and distribution of life. Drawing upon postcolonial environmental history, animal ecology, and more-than-human geography, the paper examines how humans and elephants cohabit with and against the grain of cartographic design. Through fieldwork in northeast India, it develops a ‘dwelt political ecology’ that reanimates landscape as a dwelt achievement whilst remaining sensitive to postcolonial histories and subaltern concerns. The paper conceptualises and deploys a methodology of ‘tracking’ through which archival material, elephant ecology, and voices of the marginalised can be integrated and mapped. It concludes by discussing the implications of this work for fostering new conversations between more-than-human geography and subaltern political ecology
The neurobiology of Etruscan shrew active touch
The Etruscan shrew, Suncus etruscus, is not only the smallest terrestrial mammal, but also one of the fastest and most tactile hunters described to date. The shrew's skeletal muscle consists entirely of fast-twitch types and lacks slow fibres. Etruscan shrews detect, overwhelm, and kill insect prey in large numbers in darkness. The cricket prey is exquisitely mechanosensitive and fast-moving, and is as big as the shrew itself. Experiments with prey replica show that shape cues are both necessary and sufficient for evoking attacks. Shrew attacks are whisker guided by motion- and size-invariant Gestalt-like prey representations. Shrews often attack their prey prior to any signs of evasive manoeuvres. Shrews whisk at frequencies of approximately 14 Hz and can react with latencies as short as 25–30 ms to prey movement. The speed of attacks suggests that shrews identify and classify prey with a single touch. Large parts of the shrew's brain respond to vibrissal touch, which is represented in at least four cortical areas comprising collectively about a third of the cortical volume. Etruscan shrews can enter a torpid state and reduce their body temperature; we observed that cortical response latencies become two to three times longer when body temperature drops from 36°C to 24°C, suggesting that endothermy contributes to the animal's high-speed sensorimotor performance. We argue that small size, high-speed behaviour and extreme dependence on touch are not coincidental, but reflect an evolutionary strategy, in which the metabolic costs of small body size are outweighed by the advantages of being a short-range high-speed touch and kill predator
Anatomy of life and well-being: A framework for the contributions of phenomenology and complexity theory
This paper proposes an anatomy of the phenomena of life and of correlate qualitative modes of empirical research, theory, and professional practice concerned with health and well-being. I explicate the qualitative dynamic operative at every level of order, from the biological realm of cells and organisms, through distinctively human lifeworld experiences and practices, to communities of organisms in ecosystems and bio-cultural regions. This paper clarifies the unity of the dimensions of life and aligns these with demonstrated and emerging contributions of hermeneutical phenomenology and current complexity–autopoietic theory (including disciplinary and professional interpretations of empirical findings). The intent is begin to delineate a common framework upon which we could build—facilitating better understanding of the distinctive contributions of each specialization as well as the integration of diverse qualitative approaches with each other (and with quantitative complements)
Quantitative trait loci and candidate gene mapping of aluminum tolerance in diploid alfalfa
Aluminum (Al) toxicity in acid soils is a major limitation to the production of alfalfa (Medicago sativa subsp. sativa L.) in the USA. Developing Al-tolerant alfalfa cultivars is one approach to overcome this constraint. Accessions of wild diploid alfalfa (M. sativa subsp. coerulea) have been found to be a source of useful genes for Al tolerance. Previously, two genomic regions associated with Al tolerance were identified in this diploid species using restriction fragment length polymorphism (RFLP) markers and single marker analysis. This study was conducted to identify additional Al-tolerance quantitative trait loci (QTLs); to identify simple sequence repeat (SSR) markers that flank the previously identified QTLs; to map candidate genes associated with Al tolerance from other plant species; and to test for co-localization with mapped QTLs. A genetic linkage map was constructed using EST-SSR markers in a population of 130 BC(1)F(1) plants derived from the cross between Al-sensitive and Al-tolerant genotypes. Three putative QTLs on linkage groups LG I, LG II and LG III, explaining 38, 16 and 27% of the phenotypic variation, respectively, were identified. Six candidate gene markers designed from Medicago truncatula ESTs that showed homology to known Al-tolerance genes identified in other plant species were placed on the QTL map. A marker designed from a candidate gene involved in malic acid release mapped near a marginally significant QTL (LOD 2.83) on LG I. The SSR markers flanking these QTLs will be useful for transferring them to cultivated alfalfa via marker-assisted selection and for pyramiding Al tolerance QTLs
- …