231 research outputs found
High-resolution measurement of the time-modulated orbital electron capture and of the decay of hydrogen-like Pm ions
The periodic time modulations, found recently in the two-body orbital
electron-capture (EC) decay of both, hydrogen-like Pr and
Pm ions, with periods near to 7s and amplitudes of about 20%,
were re-investigated for the case of Pm by using a 245 MHz
resonator cavity with a much improved sensitivity and time resolution. We
observed that the exponential EC decay is modulated with a period s, in accordance with a modulation period s as obtained
from simultaneous observations with a capacitive pick-up, employed also in the
previous experiments. The modulation amplitudes amount to and
for the 245 MHz resonator and the capacitive pick-up,
respectively. These new results corroborate for both detectors {\it exactly}
our previous findings of modulation periods near to 7s, though with {\it
distinctly smaller} amplitudes. Also the three-body decays have been
analyzed. For a supposed modulation period near to 7s we found an amplitude , compatible with and in agreement with the preliminary
result of our previous experiment. These observations could
point at weak interaction as origin of the observed 7s-modulation of the EC
decay. Furthermore, the data suggest that interference terms occur in the
two-body EC decay, although the neutrinos are not directly observed.Comment: In memoriam of Prof. Paul Kienle, 9 pages, 1 table, 5 figures Phys.
Lett. B (2013) onlin
Seesaw mechanism in the sneutrino sector and its consequences
The seesaw-extended MSSM provides a framework in which the observed light
neutrino masses and mixing angles can be generated in the context of a natural
theory for the TeV-scale. Sneutrino-mixing phenomena provide valuable tools for
connecting the physics of neutrinos and supersymmetry. We examine the
theoretical structure of the seesaw-extended MSSM, retaining the full
complexity of three generations of neutrinos and sneutrinos. In this general
framework, new flavor-changing and CP-violating sneutrino processes are
allowed, and are parameterized in terms of two matrices that
respectively preserve and violate lepton number. The elements of these matrices
can be bounded by analyzing the rate for rare flavor-changing decays of charged
leptons and the one-loop contribution to neutrino masses. In the former case,
new contributions arise in the seesaw extended model which are not present in
the ordinary MSSM. In the latter case, sneutrino--antisneutrino mixing
generates the leading correction at one-loop to neutrino masses, and could
provide the origin of the observed texture of the light neutrino mass matrix.
Finally, we derive general formulae for sneutrino--antisneutrino oscillations
and sneutrino flavor-oscillations. Unfortunately, neither oscillation phenomena
is likely to be observable at future colliders.Comment: 69 pages, 5 figures, uses axodraw.sty. Version accepted for
publication in JHEP: some comments and one more Appendix with additional
discussion added, references update
Hadronic Cross-sections in two photon Processes at a Future Linear Collider
In this note we address the issue of measurability of the hadronic
cross-sections at a future photon collider as well as for the two-photon
processes at a future high energy linear collider. We extend, to
higher energy, our previous estimates of the accuracy with which the \gamgam\
cross-section needs to be measured, in order to distinguish between different
theoretical models of energy dependence of the total cross-sections. We show
that the necessary precision to discriminate among these models is indeed
possible at future linear colliders in the Photon Collider option. Further we
note that even in the option a measurement of the hadron production
cross-section via \gamgam processes, with an accuracy necessary to allow
discrimination between different theoretical models, should be possible. We
also comment briefly on the implications of these predictions for hadronic
backgrounds at the future TeV energy collider CLIC.Comment: 20 pages, 5 figures, LaTeX. Added an acknowledgemen
Charged Particles in a 2+1 Curved Background
The coupling to a 2+1 background geometry of a quantized charged test
particle in a strong magnetic field is analyzed. Canonical operators adapting
to the fast and slow freedoms produce a natural expansion in the inverse square
root of the magnetic field strength. The fast freedom is solved to the second
order.
At any given time, space is parameterized by a couple of conjugate operators
and effectively behaves as the `phase space' of the slow freedom. The slow
Hamiltonian depends on the magnetic field norm, its covariant derivatives, the
scalar curvature and presents a peculiar coupling with the spin-connection.Comment: 22 page
Multiple Interactions and the Structure of Beam Remnants
Recent experimental data have established some of the basic features of
multiple interactions in hadron-hadron collisions. The emphasis is therefore
now shifting, to one of exploring more detailed aspects. Starting from a brief
review of the current situation, a next-generation model is developed, wherein
a detailed account is given of correlated flavour, colour, longitudinal and
transverse momentum distributions, encompassing both the partons initiating
perturbative interactions and the partons left in the beam remnants. Some of
the main features are illustrated for the Tevatron and the LHC.Comment: 69pp, 33 figure
Large-Volume Flux Compactifications: Moduli Spectrum and D3/D7 Soft Supersymmetry Breaking
We present an explicit calculation of the spectrum of a general class of
string models, corresponding to Calabi-Yau flux compactifications with
h_{1,2}>h_{1,1}>1 with leading perturbative and non-perturbative corrections,
in which all geometric moduli are stabilised as in hep-th/0502058. The volume
is exponentially large, leading to a range of string scales from the Planck
mass to the TeV scale, realising for the first time the large extra dimensions
scenario in string theory. We provide a general analysis of the relevance of
perturbative and non-perturbative effects and the regime of validity of the
effective field theory. We compute the spectrum in the moduli sector finding a
hierarchy of masses depending on inverse powers of the volume. We also compute
soft supersymmetry breaking terms for particles living on D3 and D7 branes. We
find a hierarchy of soft terms corresponding to `volume dominated' F-term
supersymmetry breaking. F-terms for Kahler moduli dominate both those for
dilaton and complex structure moduli and D-terms or other de Sitter lifting
terms. This is the first class of string models in which soft supersymmetry
breaking terms are computed after fixing all geometric moduli. We outline
several possible applications of our results, both for cosmology and
phenomenology and point out the differences with the less generic KKLT vacua.Comment: 64 pages, 4 figures; v2. references added; v3. typos, reference
added, matches published versio
Teacher Questioning in Problem Solving in Community College Algebra Classrooms
In this chapter, we focus on the ways two community college instructors worked with students to demonstrate the solution of contextualized algebra problems in their college algebra lessons. We use two classroom episodes to illustrate how they sought to elicit students' mathematical ideas of algebraic topics, attending primarily to teachers' questioning approaches. We found that the instructors mostly asked questions of lower cognitive demand and used a variety of approaches to elicit the mathematical ideas of the problems, such as using examples relevant to the students and dividing the problems into smaller tasks, that together help identify a solution. We conclude by offering considerations for instruction at community colleges and potential areas for professional development
Operation 'Cerberus Action' and the 'Four Corners' Prosecution.
There is a generally accepted belief that a well publicised prosecution, which results in the conviction of the offenders will deter crime by sending out a ‘clear message’ to those intending to offend. Those who seek to enforce the legal protection of antiquities and archaeological sites will often decry the number of prosecutions brought, and urge a more aggressive prosecution policy against looters and traffickers in antiquities. However a prosecution may not always produce the anticipated outcome of deterrence. In this article a lawyer examines a recent high profile operation undertaken by the Federal Bureau of Investigation and the Bureau of Land Management against looters and traffickers in the south west of the United States for breaches of the Archaeological Resources Protection Act of 1979 and its outcome. It will begin with a short consideration of the context in which the prosecutions were brought: the scale of looting in the area; the difficulties facing those who have to enforce the law; the legal and historical background, and the belief of many in the area that they have a right to dig for artefacts and to collect or sell them. It will then consider ‘Operation Cerberus Action’ and its consequences in some detail, drawing on contemporaneous newspaper accounts and blog comments to illustrate that a prosecution, even where it results in conviction of all the defendants, may be counterproductive, serving only to entrench existing attitudes rather than encouraging behavioural change in intending looters and traffickers
Observational Constraints on Undulant Cosmologies
In an undulant universe, cosmic expansion is characterized by alternating
periods of acceleration and deceleration. We examine cosmologies in which the
dark-energy equation of state varies periodically with the number of e-foldings
of the scale factor of the universe, and use observations to constrain the
frequency of oscillation. We find a tension between a forceful response to the
cosmic coincidence problem and the standard treatment of structure formation.Comment: 19 pages, 12 figures in 19 files, uses iopart.cls, iopart10.clo;
added reference
- …