16 research outputs found

    An experimental investigation into the constant velocity water entry of wedge-shaped sections

    Get PDF
    Constant velocity water entry is important in understanding planing and slamming of marine vessels. A test rig has been developed that drives a wedge section with end plates down guides to enter the water vertically at near constant velocity. Entry force and velocity are measured. Analysis of the test data shows that the wetting factor is about 1.6 at low deadrise angles and reduces nearly linearly to 1.3 at 451 deadrise angle. The added mass increases quadratically with immersed depth until the chines become wetted. It then continues to increase at a reducing rate, reaching a maximum value between 20% and 80% greater than at chine immersion. The flow momentum drag coefficient is estimated from the results to be 0.78 at 51 deadrise angle reducing to 0.41 at 451 deadrise angles. Constant velocity exit tests show that the momentum of the added mass is expended in driving the water above the surface level and that exit forces are low and equivalent to a drag coefficient of about 1.0-1.3. Considerable dynamic noise limits the accuracy of the results, particularly after chine immersion

    Momentum and gravity effects during the constant velocity water entry of wedge-shaped sections

    No full text
    Computational fluid dynamics analysis was used to investigate the added mass momentum, flow momentum and gravity effects during the constant velocity water entry of wedge-shaped sections with deadrise angles from 5 degrees to 45 degrees. It is shown that the added mass continues to increase for a time after chine immersion and that added mass can be estimated in terms of a constant added mass coefficient and an effective wetted width. A momentum theory is presented in which the water entry force is explained as the sum of the rate of change of added mass momentum, which becomes zero at immersion to chine depth ratios greater than about three, and the rate of change of flow momentum, which continues at deep immersions. The effect of gravity on the water entry force is given as the hydrostatic force together with the force necessary to create the potential energy in the water pile up. Hydrodynamic forces are not significantly changed by the effect of gravity on the flow fields
    corecore