5 research outputs found
Reasoning Under Uncertainty: Towards Collaborative Interactive Machine Learning
In this paper, we present the current state-of-the-art of decision making (DM) and machine learning (ML) and bridge the two research domains to create an integrated approach of complex problem solving based on human and computational agents. We present a novel classification of ML, emphasizing the human-in-the-loop in interactive ML (iML) and more specific on collaborative interactive ML (ciML), which we understand as a deep integrated version of iML, where humans and algorithms work hand in hand to solve complex problems. Both humans and computers have specific strengths and weaknesses and integrating humans into machine learning processes might be a very efficient way for tackling problems. This approach bears immense research potential for various domains, e.g., in health informatics or in industrial applications. We outline open questions and name future challenges that have to be addressed by the research community to enable the use of collaborative interactive machine learning for problem solving in a large scale
Generalization bounds for learning with linear, polygonal, quadratic and conic side knowledge
In this paper, we consider a supervised learning setting where side knowledge is provided about the labels of unlabeled examples. The side knowledge has the effect of reducing the hypothesis space, leading to tighter generalization bounds, and thus possibly better generalization. We consider several types of side knowledge, the first leading to linear and polygonal constraints on the hypothesis space, the second leading to quadratic constraints, and the last leading to conic constraints. We show how different types of domain knowledge can lead directly to these kinds of side knowledge. We prove bounds on complexity measures of the hypothesis space for quadratic and conic side knowledge, and show that these bounds are tight in a specific sense for the quadratic case