1,642 research outputs found

    Descriptions of Wolf Attacks on Bison Calves in Wood Buffalo National Park

    Get PDF
    Wolf predation on bison in Wood Buffalo Park and adjacent areas in late spring/early summer season was observed to be directed toward cow/calf herds. While hunting, wolf packs in early summer developed a strong preference for herds with calves. Packs of four to six individuals were observed. Of 14 interactions recorded, 12 were made from ground observations and 2 were made from the air. Five apparent defense strategies to protect calves were noted. These were: (1) to run to the cow, (2) to run to a herd, (3 ) to run to the nearest bull, (4) to get out in front and center of a stampeding herd and (5) to run through water bodies. When fleeing from wolves in open areas, cow with young calves took the lead, while bulls often were seen at the rear of the herds. When under attack from wolves, cows and particularly bulls were sometimes seen to defend the calves. Killing attempts observed in this study lasted from a few minutes to 11 hours.Key words: wolf predation, bison, wolves, antipredator defense, Wood Buffalo National ParkMots clés: prédation des loups, bisons, loups, défense contre les prédateurs, parc national Wood Buffal

    Hybrid Quarkonia with High Statistics from NRQCD

    Get PDF
    We have studied the O(mv^6) effects in NRQCD on the spectrum of heavy quarkonia and compare our results for different lattices (quenched and dynamical). We also report on an investigation into hybrid states within the framework of NRQCD. This suggests that the lowest lying hybrid is around the B^* \bar B threshold and 3 standard deviations above the B \bar B.Comment: 3 pages, LaTeX2e, 4 figures, uses styles [espcrc2, epsf], talk presented at Lattice 9

    Perturbative Wilson loops from unquenched Monte Carlo simulations at weak couplings

    Full text link
    Perturbative expansions of several small Wilson loops are computed through next-to-next-to-leading order in unquenched lattice QCD, from Monte Carlo simulations at weak couplings. This approach provides a much simpler alternative to conventional diagrammatic perturbation theory, and is applied here for the first time to full QCD. Two different sets of lattice actions are considered: one set uses the unimproved plaquette gluon action together with the unimproved staggered-quark action; the other set uses the one-loop-improved Symanzik gauge-field action together with the so-called ``asqtad'' improved-staggered quark action. Simulations are also done with different numbers of dynamical fermions. An extensive study of the systematic uncertainties is presented, which demonstrates that the small third-order perturbative component of the observables can be reliably extracted from simulation data. We also investigate the use of the rational hybrid Monte Carlo algorithm for unquenched simulations with unimproved-staggered fermions. Our results are in excellent agreement with diagrammatic perturbation theory, and provide an important cross-check of the perturbation theory input to a recent determination of the strong coupling αMSˉ(MZ)\alpha_{\bar{\rm MS}}(M_Z) by the HPQCD collaboration.Comment: 14 pages, 8 figure

    Update: Accurate Determinations of alpha_s from Realistic Lattice QCD

    Full text link
    We use lattice QCD simulations, with MILC configurations (including vacuum polarization from u, d, and s quarks), to update our previous determinations of the QCD coupling constant. Our new analysis uses results from 6 different lattice spacings and 12 different combinations of sea-quark masses to significantly reduce our previous errors. We also correct for finite-lattice-spacing errors in the scale setting, and for nonperturbative chiral corrections to the 22 short-distance quantities from which we extract the coupling. Our final result is alpha_V(7.5GeV,nf=3) = 0.2120(28), which is equivalent to alpha_msbar(M_Z,n_f=5)= 0.1183(8). We compare this with our previous result, which differs by one standard deviation.Comment: 12 pages, 2 figures, 4 table

    Unquenched Charmonium with NRQCD - Lattice 2000

    Get PDF
    We present results from a series of NRQCD simulations of the charmonium system, both in the quenched approximation and with n_f = 2 dynamical quarks. The spectra show evidence for quenching effects of ~10% in the S- and P-hyperfine splittings. We compare this with other systematic effects. Improving the NRQCD evolution equation altered the S-hyperfine by as much as 20 MeV, and we estimate radiative corrections may be as large as 40%.Comment: Lattice 2000 (Heavy Quark Physics

    Precise charm to strange mass ratio and light quark masses from full lattice QCD

    Full text link
    By using a single formalism to handle charm, strange and light valence quarks in full lattice QCD for the first time, we are able to determine ratios of quark masses to 1%. For mc/msm_c/m_s we obtain 11.85(16), an order of magnitude more precise than the current PDG average. Combined with 1% determinations of the charm quark mass now possible this gives mˉs(2GeV)=\bar{m}_s(2{\rm GeV}) = 92.4(1.5) MeV. The MILC result for ms/ml=27.2(3)m_s/m_l = 27.2(3) yields mˉl(2GeV)\bar{m}_l(2{\rm GeV}) = 3.40(7) MeV for the average of uu and dd quark masses.Comment: 4 pages, 2 figures. Version accepted by Physical Review Letters. Changes include modifying the title, using the MILC value for m_s/m_l which changes slightly the resulting up and down quark masses and their average, adding some references and making other small adjustments to the text for space reasons

    Tadpole renormalization and relativistic corrections in lattice NRQCD

    Get PDF
    We make a comparison of two tadpole renormalization schemes in the context of the quarkonium hyperfine splittings in lattice NRQCD. Improved gauge-field and NRQCD actions are analyzed using the mean-link u0,Lu_{0,L} in Landau gauge, and using the fourth root of the average plaquette u0,Pu_{0,P}. Simulations are done for ccˉc\bar c, bcˉb\bar c, and bbˉb\bar b systems. The hyperfine splittings are computed both at leading and at next-to-leading order in the relativistic expansion. Results are obtained at lattice spacings in the range of about 0.14~fm to 0.38~fm. A number of features emerge, all of which favor tadpole renormalization using u0,Lu_{0,L}. This includes much better scaling behavior of the hyperfine splittings in the three quarkonium systems when u0,Lu_{0,L} is used. We also find that relativistic corrections to the spin splittings are smaller when u0,Lu_{0,L} is used, particularly for the ccˉc\bar c and bcˉb\bar c systems. We also see signs of a breakdown in the NRQCD expansion when the bare quark mass falls below about one in lattice units. Simulations with u0,Lu_{0,L} also appear to be better behaved in this context: the bare quark masses turn out to be larger when u0,Lu_{0,L} is used, compared to when u0,Pu_{0,P} is used on lattices with comparable spacings. These results also demonstrate the need to go beyond tree-level tadpole improvement for precision simulations.Comment: 14 pages, 7 figures (minor changes to some phraseology and references

    High-precision determination of the light-quark masses from realistic lattice QCD

    Full text link
    Three-flavor lattice QCD simulations and two-loop perturbation theory are used to make the most precise determination to date of the strange-, up-, and down-quark masses, msm_s, mum_u, and mdm_d, respectively. Perturbative matching is required in order to connect the lattice-regularized bare- quark masses to the masses as defined in the \msbar scheme, and this is done here for the first time at next-to-next-to leading (or two-loop) order. The bare-quark masses required as input come from simulations by the MILC collaboration of a highly-efficient formalism (using so-called ``staggered'' quarks), with three flavors of light quarks in the Dirac sea; these simulations were previously analyzed in a joint study by the HPQCD and MILC collaborations, using degenerate uu and dd quarks, with masses as low as ms/8m_s/8, and two values of the lattice spacing, with chiral extrapolation/interpolation to the physical masses. With the new perturbation theory presented here, the resulting \msbar\ masses are m^\msbar_s(2 {GeV}) = 87(0)(4)(4)(0) MeV, and \hat m^\msbar(2 {GeV}) = 3.2(0)(2)(2)(0) MeV, where \hat m = \sfrac12 (m_u + m_d) is the average of the uu and dd masses. The respective uncertainties are from statistics, simulation systematics, perturbation theory, and electromagnetic/isospin effects. The perturbative errors are about a factor of two smaller than in an earlier study using only one-loop perturbation theory. Using a recent determination of the ratio mu/md=0.43(0)(1)(0)(8)m_u/m_d = 0.43(0)(1)(0)(8) due to the MILC collaboration, these results also imply m^\msbar_u(2 {GeV}) = 1.9(0)(1)(1)(2) MeV and m^\msbar_d(2 {GeV}) = 4.4(0)(2)(2)(2) MeV. A technique for estimating the next order in the perturbative expansion is also presented, which uses input from simulations at more than one lattice spacing
    • …
    corecore