85 research outputs found
Higher-order QED corrections to W-boson mass determination at hadron colliders
The impact of higher-order final-state photonic corrections on the precise
determination of the W-boson mass at the Tevatron and LHC colliders is
evaluated. In the presence of realistic selection criteria, the shift in the W
mass from a fit to the transverse mass distribution is found to be about 10 MeV
in the channel and almost negligible in the
channel. The calculation, which is implemented in a Monte Carlo event generator
for data analysis, can contribute to reduce the uncertainty associated to the W
mass measurement at future hadron collider experiments.Comment: 9 pages, 2 figures, 1 table, RevTe
Combination of electroweak and QCD corrections to single W production at the Fermilab Tevatron and the CERN LHC
Precision studies of the production of a high-transverse momentum lepton in
association with missing energy at hadron colliders require that electroweak
and QCD higher-order contributions are simultaneously taken into account in
theoretical predictions and data analysis. Here we present a detailed
phenomenological study of the impact of electroweak and strong contributions,
as well as of their combination, to all the observables relevant for the
various facets of the p\smartpap \to {\rm lepton} + X physics programme at
hadron colliders, including luminosity monitoring and Parton Distribution
Functions constraint, precision physics and search for new physics signals.
We provide a theoretical recipe to carefully combine electroweak and strong
corrections, that are mandatory in view of the challenging experimental
accuracy already reached at the Fermilab Tevatron and aimed at the CERN LHC,
and discuss the uncertainty inherent the combination. We conclude that the
theoretical accuracy of our calculation can be conservatively estimated to be
about 2% for standard event selections at the Tevatron and the LHC, and about
5% in the very high transverse mass/lepton transverse momentum tails. We
also provide arguments for a more aggressive error estimate (about 1% and 3%,
respectively) and conclude that in order to attain a one per cent accuracy: 1)
exact mixed corrections should be computed in
addition to the already available NNLO QCD contributions and two-loop
electroweak Sudakov logarithms; 2) QCD and electroweak corrections should be
coherently included into a single event generator.Comment: One reference added. Final version to appear in JHE
Chronic treatment with agomelatine or venlafaxine reduces depolarization-evoked glutamate release from hippocampal synaptosomes
Background: Growing compelling evidence from clinical and preclinical studies has demonstrated the primary role of alterations of glutamatergic transmission in cortical and limbic areas in the pathophysiology of mood disorders. Chronic antidepressants have been shown to dampen endogenous glutamate release from rat hippocampal synaptic terminals and to prevent the marked increase of glutamate overflow induced by acute behavioral stress in frontal/prefrontal cortex. Agomelatine, a new antidepressant endowed with MT1/MT2 agonist and 5-HT2C serotonergic antagonist properties, has shown efficacy at both preclinical and clinical levels.
Results: Chronic treatment with agomelatine, or with the reference drug venlafaxine, induced a marked decrease of depolarization-evoked endogenous glutamate release from purified hippocampal synaptic terminals in superfusion. No changes were observed in GABA release. This effect was accompanied by reduced accumulation of SNARE protein complexes, the key molecular effector of vesicle docking, priming and fusion at presynaptic membranes.
Conclusions: Our data suggest that the novel antidepressant agomelatine share with other classes of antidepressants the ability to modulate glutamatergic transmission in hippocampus. Its action seems to be mediated by molecular mechanisms located on the presynaptic membrane and related with the size of the vesicle pool ready for release
Expression and glucocorticoid-dependent regulation of the stress-inducible protein DRR1 in the mouse adult brain
Identifying molecular targets that are able to buffer the consequences of stress and therefore restore brain homeostasis is essential to develop treatments for stress-related disorders. Down-regulated in renal cell carcinoma 1 (DRR1) is a unique stress-induced protein in the brain and has been recently proposed to modulate stress resilience. Interestingly, DRR1 shows a prominent expression in the limbic system of the adult mouse. Here, we analyzed the neuroanatomical and cellular expression patterns of DRR1 in the adult mouse brain using in situ hybridization, immunofluorescence and Western blot. Abundant expression of DRR1 mRNA and protein was confirmed in the adult mouse brain with pronounced differences between distinct brain regions. The strongest DRR1 signal was detected in the neocortex, the CA3 region of the hippocampus, the lateral septum and the cerebellum. DRR1 was also present in circumventricular organs and its connecting regions. Additionally, DRR1 was present in non-neuronal tissues like the choroid plexus and ependyma. Within cells, DRR1 protein was distributed in a punctate pattern in several subcellular compartments including cytosol, nucleus as well as some pre- and postsynaptic specializations. Glucocorticoid receptor activation (dexamethasone 10\ua0mg/kg s.c.) induced DRR1 expression throughout the brain, with particularly strong induction in white matter and fiber tracts and in membrane-rich structures. This specific expression pattern and stress modulation of DRR1 point to a role of DRR1 in regulating how cells sense and integrate signals from the environment and thus in restoring brain homeostasis after stressful challenges
Registered Replication Report on Fischer, Castel, Dodd, and Pratt (2003)
The attentional spatial-numerical association of response codes (Att-SNARC) effect (Fischer, Castel, Dodd, & Pratt, 2003)—the finding that participants are quicker to detect left-side targets when the targets are preceded by small numbers and quicker to detect right-side targets when they are preceded by large numbers—has been used as evidence for embodied number representations and to support strong claims about the link between number and space (e.g., a mental number line). We attempted to replicate Experiment 2 of Fischer et al. by collecting data from 1,105 participants at 17 labs. Across all 1,105 participants and four interstimulus-interval conditions, the proportion of times the effect we observed was positive (i.e., directionally consistent with the original effect) was .50. Further, the effects we observed both within and across labs were minuscule and incompatible with those observed by Fischer et al. Given this, we conclude that we failed to replicate the effect reported by Fischer et al. In addition, our analysis of several participant-level moderators (finger-counting habits, reading and writing direction, handedness, and mathematics fluency and mathematics anxiety) revealed no substantial moderating effects. Our results indicate that the Att-SNARC effect cannot be used as evidence to support strong claims about the link between number and space
Registered replication report on Fischer, Castel, Dodd, and Pratt (2003)
The attentional spatial-numerical association of response codes (Att-SNARC) effect (Fischer, Castel, Dodd, & Pratt, 2003)—the finding that participants are quicker to detect left-side targets when the targets are preceded by small numbers and quicker to detect right-side targets when they are preceded by large numbers—has been used as evidence for embodied number representations and to support strong claims about the link between number and space (e.g., a mental number line). We attempted to replicate Experiment 2 of Fischer et al. by collecting data from 1,105 participants at 17 labs. Across all 1,105 participants and four interstimulus-interval conditions, the proportion of times the effect we observed was positive (i.e., directionally consistent with the original effect) was .50. Further, the effects we observed both within and across labs were minuscule and incompatible with those observed by Fischer et al. Given this, we conclude that we failed to replicate the effect reported by Fischer et al. In addition, our analysis of several participant-level moderators (finger-counting habits, reading and writing direction, handedness, and mathematics fluency and mathematics anxiety) revealed no substantial moderating effects. Our results indicate that the Att-SNARC effect cannot be used as evidence to support strong claims about the link between number and space
Coupling News Sentiment with Web Browsing Data Improves Prediction of Intra-Day Price Dynamics
The new digital revolution of big data is deeply changing our capability of understanding society and forecasting the outcome of many social and economic systems. Unfortunately, information can be very heterogeneous in the importance, relevance, and surprise it conveys, affecting severely the predictive power of semantic and statistical methods. Here we show that the aggregation of web users’ behavior can be elicited to overcome this problem in a hard to predict complex system, namely the financial market. Specifically, our in-sample analysis shows that the combined use of sentiment analysis of news and browsing activity of users of Yahoo! Finance greatly helps forecasting intra-day and daily price changes of a set of 100 highly capitalized US stocks traded in the period 2012–2013. Sentiment analysis or browsing activity when taken alone have very small or no predictive power. Conversely, when considering a news signal where in a given time interval we compute the average sentiment of the clicked news, weighted by the number of clicks, we show that for nearly 50% of the companies such signal Granger-causes hourly price returns. Our result indicates a “wisdom-of-the-crowd” effect that allows to exploit users’ activity to identify and weigh properly the relevant and surprising news, enhancing considerably the forecasting power of the news sentiment
Morpho-dimensional analysis of the maxillary central incisor clinical crown in cases of congenitally missing upper lateral incisors
Aim: the purpose of this study was to analyse the crown morphology of maxillary central incisors in cases of agenesis of the upper lateral incisors, in order to establish patterns of associations between redu- ced mesio-distal dimensions of anterior teeth and tooth abnormalities in number. Materials and methods: the sample consisted of 31 patients with unilateral and bilateral absence of maxillary lateral in- cisors. Ninety six subjects without any agenesis were included in the control group. Mesio-distal widths of each central incisor crown we- re measured by means of 2 parameters; at the apical third of the crown and at the contact point. A Student’s t test was used to compare the results of each measurement within both group. Results: Significant differences were found in mesio-distal diameters at the contact points but not in the mesio-distal diameter at the apical third of the crown. Conclusions: It could be suggested that in case of cases of agene- sis of the lateral incisors the central incisors show a rectangular sha- pe of the crown instead of the trapezoid shape in subjects without age- nesis. These remarks should be considered before the orthodontic-pro- sthetic treatment is planned.
A Olivadoti, T Doldo, M Treccani. Morpho-dimensional analysis of the maxillary central incisor clinical crown in cases of congenitally missing upper lateral incisors. Prog Orthod 2009;10(1):12-19
- …