579 research outputs found
Photo-response of the conductivity in functionalized pentacene compounds
We report the first investigation of the photo-response of the conductivity
of a new class of organic semiconductors based on functionalized pentacene.
These materials form high quality single crystals that exhibit a thermally
activated resistivity. Unlike pure pentacene, the functionalized derivatives
are readily soluble in acetone, and can be evaporated or spin-cast as thin
films for potential device applications. The electrical conductivity of the
single crystal materials is noticeably sensitive to ambient light changes. The
purpose, therefore, of the present study, is to determine the nature of the
photo-response in terms of carrier activation vs. heating effects, and also to
measure the dependence of the photo-response on photon energy. We describe a
new method, involving the temperature dependent photo-response, which allows an
unambiguous identification of the signature of heating effects in materials
with a thermally activated conductivity. We find strong evidence that the
photo-response in the materials investigated is predominantly a highly
localized heating mechanism. Wavelength dependent studies of the photo-response
reveal resonant features and cut-offs that indicate the photon energy
absorption is related to the electronic structure of the material.Comment: Preprint: 18 pages total,7 figure
Debye relaxation in high magnetic fields
Dielectric relaxation is universal in characterizing polar liquids and
solids, insulators, and semiconductors, and the theoretical models are well
developed. However, in high magnetic fields, previously unknown aspects of
dielectric relaxation can be revealed and exploited. Here, we report low
temperature dielectric relaxation measurements in lightly doped silicon in high
dc magnetic fields B both parallel and perpendicular to the applied ac electric
field E. For B//E, we observe a temperature and magnetic field dependent
dielectric dispersion e(w)characteristic of conventional Debye relaxation where
the free carrier concentration is dependent on thermal dopant ionization,
magnetic freeze-out, and/or magnetic localization effects. However, for BperpE,
anomalous dispersion emerges in e(w) with increasing magnetic field. It is
shown that the Debye formalism can be simply extended by adding the Lorentz
force to describe the general response of a dielectric in crossed magnetic and
electric fields. Moreover, we predict and observe a new transverse dielectric
response EH perp B perp E not previously described in magneto-dielectric
measurements. The new formalism allows the determination of the mobility and
the ability to discriminate between magnetic localization/freeze out and
Lorentz force effects in the magneto-dielectric response.Comment: 19 pages, 6 figure
Substitution Effect by Deuterated Donors on Superconductivity in -(BEDT-TTF)Cu[N(CN)]Br
We investigate the superconductivity in the deuterated BEDT-TTF molecular
substitution system
-[(h8-BEDT-TTF)(d8-BEDT-TTF)]Cu[N(CN)]Br, where h8
and d8 denote fully hydrogenated and deuterated molecules, respectively.
Systematic and wide range ( = 0 -- 1) substitution can control chemical
pressure finely near the Mott boundary, which results in the modification of
the superconductivity. After cooling slowly, the increase of
observed up to 0.1 is evidently caused by the chemical pressure
effect. Neither reduction of nor suppression of
superconducting volume fraction is found below 0.5. This demonstrates
that the effect of disorder by substitution is negligible in the present
system. With further increase of , both and superconducting
volume fraction start to decrease toward the values in = 1.Comment: J. Phys. Soc. Jp
A bulk 2D Pauli Limited Superconductor
We present a nearly perfect Pauli-limited critical field phase diagram for
the anisotropic organic superconductor \-(ET)NH(SCN) when
the applied magnetic field is oriented parallel to the conducting layers. The
critical fields ({H_{c_2}) were found by use of penetration depth
measurements. Because {H_{c_2} is Pauli-limited, the size of the
superconducting energy gap can be calculated. The role of spin-orbit scattering
and many-body effects play a role in explaining our measurements.Comment: 4 pages, 5 figures. V5, corrections were made to the text, present
data was include
Responses of ring widths and maximum densities of Larix gmelinii to climate on contrasting north- and south-facing slopes in central Siberia
The original publication is available at www.springerlink.com.ArticleEcological Research. 22(4):582-592 (2007)journal articl
Climatic responses of tree-ring widths of Larix gmelinii on contrasting north- and south-facing slopes in central Siberia
The original publication is available at www.springerlink.com.ArticleJournal of Wood Science. 53(2): 87-93 (2007)journal articl
Large-scale electronic-structure theory and nanoscale defects formed in cleavage process of silicon
Several methods are constructed for large-scale electronic structure
calculations. Test calculations are carried out with up to 10^7 atoms. As an
application, cleavage process of silicon is investigated by molecular dynamics
simulation with 10-nm-scale systems. As well as the elementary formation
process of the (111)-(2 x 1) surface, we obtain nanoscale defects, that is,
step formation and bending of cleavage path into favorite (experimentally
observed) planes. These results are consistent to experiments. Moreover, the
simulation result predicts an explicit step structure on the cleaved surface,
which shows a bias-dependent STM image.Comment: 4 page 4 figures. A PDF file with better graphics is available at
http://fujimac.t.u-tokyo.ac.jp/lses
Protein Kinase R Modulates c-Fos and c-Jun Signaling to Promote Proliferation of Hepatocellular Carcinoma with Hepatitis C Virus Infection
Double-stranded RNA-activated protein kinase R (PKR) is known to be upregulated by hepatitis C virus (HCV) and overexpressed in hepatocellular carcinoma (HCC). However, the precise roles of PKR in HCC with HCV infection remain unclear. Two HCV replicating cell lines (JFH-1 and H77s), generated by transfection of Huh7.5.1 cells, were used for experiments reported here. PKR expression was modulated with siRNA and a PKR expression plasmid, and cancer-related genes were assessed by real-time PCR and Western blotting; cell lines were further analyzed using a proliferation assay. Modulation of genes by PKR was also assessed in 34 human HCC specimens. Parallel changes in c-Fos and c-Jun gene expression with PKR were observed. Levels of phosphorylated c-Fos and c-Jun were upregulated by an increase of PKR, and were related to levels of phosphorylated JNK1 and Erk1/2. DNA binding activities of c-Fos and c-Jun also correlated with PKR expression, and cell proliferation was dependent on PKR-modulated c-Fos and c-Jun expression. Coordinate expression of c-Jun and PKR was confirmed in human HCC specimens with HCV infection. PKR upregulated c-Fos and c-Jun activities through activation of Erk1/2 and JNK1, respectively. These modulations resulted in HCC cell proliferation with HCV infection. These findings suggest that PKR-related proliferation pathways could be an attractive therapeutic target
- …