98 research outputs found

    Gain of 20q11.21 in human pluripotent stem cells impairs TGF-β-dependent neuroectodermal commitment

    Get PDF
    Gain of 20q11.21 is one of the most common recurrent genomic aberrations in human pluripotent stem cells. Although it is known that overexpression of the antiapoptotic gene Bcl-xL confers a survival advantage to the abnormal cells, their differentiation capacity has not been fully investigated. RNA sequencing of mutant and control hESC lines, and a line transgenically overexpressing Bcl-xL, shows that overexpression of Bcl-xL is sufficient to cause most transcriptional changes induced by the gain of 20q11.21. Moreover, the differentially expressed genes in mutant and Bcl-xL overexpressing lines are enriched for genes involved in TGF-beta- and SMAD-mediated signaling, and neuron differentiation. Finally, we show that this altered signaling has a dramatic negative effect on neuroectodermal differentiation, while the cells maintain their ability to differentiate to mesendoderm derivatives. These findings stress the importance of thorough genetic testing of the lines before their use in research or the clinic

    Redox proteomics of the inflammatory secretome identifies a common set of redoxins and other glutathionylated proteins released in inflammation, influenza virus infection and oxidative stress

    Get PDF
    Protein cysteines can form transient disulfides with glutathione (GSH), resulting in the production of glutathionylated proteins, and this process is regarded as a mechanism by which the redox state of the cell can regulate protein function. Most studies on redox regulation of immunity have focused on intracellular proteins. In this study we have used redox proteomics to identify those proteins released in glutathionylated form by macrophages stimulated with lipopolysaccharide (LPS) after pre-loading the cells with biotinylated GSH. Of the several proteins identified in the redox secretome, we have selected a number for validation. Proteomic analysis indicated that LPS stimulated the release of peroxiredoxin (PRDX) 1, PRDX2, vimentin (VIM), profilin1 (PFN1) and thioredoxin 1 (TXN1). For PRDX1 and TXN1, we were able to confirm that the released protein is glutathionylated. PRDX1, PRDX2 and TXN1 were also released by the human pulmonary epithelial cell line, A549, infected with influenza virus. The release of the proteins identified was inhibited by the anti-inflammatory glucocorticoid, dexamethasone (DEX), which also inhibited tumor necrosis factor (TNF)-α release, and by thiol antioxidants (N-butanoyl GSH derivative, GSH-C4, and N-acetylcysteine (NAC), which did not affect TNF-α production. The proteins identified could be useful as biomarkers of oxidative stress associated with inflammation, and further studies will be required to investigate if the extracellular forms of these proteins has immunoregulatory functions

    The proteome of neural stem cells from adult rat hippocampus

    Get PDF
    BACKGROUND: Hippocampal neural stem cells (HNSC) play an important role in cerebral plasticity in the adult brain and may contribute to tissue repair in neurological disease. To describe their biological potential with regard to plasticity, proliferation, or differentiation, it is important to know the cellular composition of their proteins, subsumed by the term proteome. RESULTS: Here, we present for the first time a proteomic database for HNSC isolated from the brains of adult rats and cultured for 10 weeks. Cytosolic proteins were extracted and subjected to two-dimensional gel electrophoresis followed by protein identification through mass spectrometry, database search, and gel matching. We could map about 1141 ± 209 (N = 5) protein spots for each gel, of which 266 could be identified. We could group the identified proteins into several functional categories including metabolism, protein folding, energy metabolism and cellular respiration, as well as cytoskeleton, Ca(2+ )signaling pathways, cell cycle regulation, proteasome and protein degradation. We also found proteins belonging to detoxification, neurotransmitter metabolism, intracellular signaling pathways, and regulation of DNA transcription and RNA processing. CONCLUSIONS: The HNSC proteome database is a useful inventory which will allow to specify changes in the cellular protein expression pattern due to specific activated or suppressed pathways during differentiation or proliferation of neural stem cells. Several proteins could be identified in the HNSC proteome which are related to differentiation and plasticity, indicating activated functional pathways. Moreover, we found a protein for which no expression has been described in brain cells before

    Haze in Pluto's atmosphere: Results from SOFIA and ground-based observations of the 2015 June 29 Pluto occultation

    Get PDF
    On UT 29 June 2015, the occultation by Pluto of a bright star (r′ = 11.9) was observed from the Stratospheric Observatory for Infrared Astronomy (SOFIA) and several ground-based stations in New Zealand and Australia. Pre-event astrometry allowed for an in-flight update to the SOFIA team with the result that SOFIA was deep within the central flash zone (~22 km from center). Analysis of the combined data leads to the result that Pluto's middle atmosphere is essentially unchanged from 2011 and 2013 (Person et al. 2013; Bosh et al. 2015); there has been no significant expansion or contraction of the atmosphere. Additionally, our multi-wavelength observations allow us to conclude that a haze component in the atmosphere is required to reproduce the light curves obtained. This haze scenario has implications for understanding the photochemistry of Pluto's atmosphere

    Standards of Care for the Health of Transgender and Gender Diverse People, Version 8

    Full text link
    Background: Transgender healthcare is a rapidly evolving interdisciplinary field. In the last decade, there has been an unprecedented increase in the number and visibility of transgender and gender diverse (TGD) people seeking support and gender-affirming medical treatment in parallel with a significant rise in the scientific literature in this area. The World Professional Association for Transgender Health (WPATH) is an international, multidisciplinary, professional association whose mission is to promote evidence-based care, education, research, public policy, and respect in transgender health. One of the main functions of WPATH is to promote the highest standards of health care for TGD people through the Standards of Care (SOC). The SOC was initially developed in 1979 and the last version (SOC-7) was published in 2012. In view of the increasing scientific evidence, WPATH commissioned a new version of the Standards of Care, the SOC-8. Aim: The overall goal of SOC-8 is to provide health care professionals (HCPs) with clinical guidance to assist TGD people in accessing safe and effective pathways to achieving lasting personal comfort with their gendered selves with the aim of optimizing their overall physical health, psychological well-being, and self-fulfillment. Methods: The SOC-8 is based on the best available science and expert professional consensus in transgender health. International professionals and stakeholders were selected to serve on the SOC-8 committee. Recommendation statements were developed based on data derived from independent systematic literature reviews, where available, background reviews and expert opinions. Grading of recommendations was based on the available evidence supporting interventions, a discussion of risks and harms, as well as the feasibility and acceptability within different contexts and country settings. Results: A total of 18 chapters were developed as part of the SOC-8. They contain recommendations for health care professionals who provide care and treatment for TGD people. Each of the recommendations is followed by explanatory text with relevant references. General areas related to transgender health are covered in the chapters Terminology, Global Applicability, Population Estimates, and Education. The chapters developed for the diverse population of TGD people include Assessment of Adults, Adolescents, Children, Nonbinary, Eunuchs, and Intersex Individuals, and people living in Institutional Environments. Finally, the chapters related to gender-affirming treatment are Hormone Therapy, Surgery and Postoperative Care, Voice and Communication, Primary Care, Reproductive Health, Sexual Health, and Mental Health. Conclusions: The SOC-8 guidelines are intended to be flexible to meet the diverse health care needs of TGD people globally. While adaptable, they offer standards for promoting optimal health care and guidance for the treatment of people experiencing gender incongruence. As in all previous versions of the SOC, the criteria set forth in this document for gender-affirming medical interventions are clinical guidelines; individual health care professionals and programs may modify these in consultation with the TGD person

    Electron Transfer Function versus Oxygen Delivery: A Comparative Study for Several Hexacoordinated Globins Across the Animal Kingdom

    Get PDF
    Caenorhabditis elegans globin GLB-26 (expressed from gene T22C1.2) has been studied in comparison with human neuroglobin (Ngb) and cytoglobin (Cygb) for its electron transfer properties. GLB-26 exhibits no reversible binding for O2 and a relatively low CO affinity compared to myoglobin-like globins. These differences arise from its mechanism of gaseous ligand binding since the heme iron of GLB-26 is strongly hexacoordinated in the absence of external ligands; the replacement of this internal ligand, probably the E7 distal histidine, is required before binding of CO or O2 as for Ngb and Cygb. Interestingly the ferrous bis-histidyl GLB-26 and Ngb, another strongly hexacoordinated globin, can transfer an electron to cytochrome c (Cyt-c) at a high bimolecular rate, comparable to those of inter-protein electron transfer in mitochondria. In addition, GLB-26 displays an unexpectedly rapid oxidation of the ferrous His-Fe-His complex without O2 actually binding to the iron atom, since the heme is oxidized by O2 faster than the time for distal histidine dissociation. These efficient mechanisms for electron transfer could indicate a family of hexacoordinated globin which are functionally different from that of pentacoordinated globins
    • …
    corecore