437 research outputs found
An evaluation of a nurse led unit: an action research study
This study is an exemplar of working in a participatory way with members of the public and health and social care practitioners as co-researchers. A Nurse Consultant Older People working in a nurse-led bed, intermediate care facility in a community hospital acted as joint project lead with an academic researcher. From the outset, members of the public were part of a team of 16 individuals who agreed an evaluation focus and were involved in all stages of the research process from design through to dissemination. An extensive evaluation reflecting all these stakeholders’ preferences was undertaken. Methods included research and audit including: patient and carer satisfaction questionnaire surveys, individual interviews with patients, carers and staff, staff surveys, graffiti board, suggestion box, first impressions questionnaire, patient tracking and a bed census. A key aim of the study has been capacity building of the research team members which has also been evaluated. In terms of impact, the co-researchers have developed research skills and knowledge, grown in confidence, developed in ways that have impacted elsewhere in their lives, developed posters, presented at conferences and gained a better understanding of the NHS. The evaluation itself has provided useful information on the processes and outcomes of intermediate care on the ward which was used to further improve the service
The SKA Particle Array Prototype: The First Particle Detector at the Murchison Radio-astronomy Observatory
We report on the design, deployment, and first results from a scintillation
detector deployed at the Murchison Radio-astronomy Observatory (MRO). The
detector is a prototype for a larger array -- the Square Kilometre Array
Particle Array (SKAPA) -- planned to allow the radio-detection of cosmic rays
with the Murchison Widefield Array and the low-frequency component of the
Square Kilometre Array. The prototype design has been driven by stringent
limits on radio emissions at the MRO, and to ensure survivability in a desert
environment. Using data taken from Nov.\ 2018 to Feb.\ 2019, we characterize
the detector response while accounting for the effects of temperature
fluctuations, and calibrate the sensitivity of the prototype detector to
through-going muons. This verifies the feasibility of cosmic ray detection at
the MRO. We then estimate the required parameters of a planned array of eight
such detectors to be used to trigger radio observations by the Murchison
Widefield Array.Comment: 17 pages, 14 figures, 3 table
The precautionary principle in environmental science.
Environmental scientists play a key role in society's responses to environmental problems, and many of the studies they perform are intended ultimately to affect policy. The precautionary principle, proposed as a new guideline in environmental decision making, has four central components: taking preventive action in the face of uncertainty; shifting the burden of proof to the proponents of an activity; exploring a wide range of alternatives to possibly harmful actions; and increasing public participation in decision making. In this paper we examine the implications of the precautionary principle for environmental scientists, whose work often involves studying highly complex, poorly understood systems, while at the same time facing conflicting pressures from those who seek to balance economic growth and environmental protection. In this complicated and contested terrain, it is useful to examine the methodologies of science and to consider ways that, without compromising integrity and objectivity, research can be more or less helpful to those who would act with precaution. We argue that a shift to more precautionary policies creates opportunities and challenges for scientists to think differently about the ways they conduct studies and communicate results. There is a complicated feedback relation between the discoveries of science and the setting of policy. While maintaining their objectivity and focus on understanding the world, environmental scientists should be aware of the policy uses of their work and of their social responsibility to do science that protects human health and the environment. The precautionary principle highlights this tight, challenging linkage between science and policy
Reclaiming the political : emancipation and critique in security studies
The critical security studies literature has been marked by a shared commitment towards the politicization of security – that is, the analysis of its assumptions, implications and the practices through which it is (re)produced. In recent years, however, politicization has been accompanied by a tendency to conceive security as connected with a logic of exclusion, totalization and even violence. This has resulted in an imbalanced politicization that weakens critique. Seeking to tackle this situation, the present article engages with contributions that have advanced emancipatory versions of security. Starting with, but going beyond, the so-called Aberystwyth School of security studies, the argument reconsiders the meaning of security as emancipation by making the case for a systematic engagement with the notions of reality and power. This revised version of security as emancipation strengthens critique by addressing political dimensions that have been underplayed in the critical security literature
Do trees in UK-relevant river catchments influence fluvial flood peaks?: a systematic review
This report describes a systematic review of the evidence in support of the primary question “Do trees in UK-relevant river catchments influence fluvial flood peaks?
A review of assessment methods for river hydromorphology
The work leading to this paper has received funding for the EU’s FP7 under Grant Agreement No. 282656 (REFORM
Bridging the gap between energy and the environment
Meeting the world’s energy demand is a major challenge for society over the coming century. To identify the most sustainable energy pathways to meet this demand, analysis of energy systems on which policy is based must move beyond the current primary focus on carbon to include a broad range of ecosystem services on which human well-being depends. Incorporation of a broad set of ecosystem services into the design of energy policy will differentiates between energy technology options to identify policy options that reconcile national and international obligations to address climate change and the loss of biodiversity and ecosystem services. In this paper we consider our current understanding of the implications of energy systems for ecosystem services and identify key elements of an assessment. Analysis must consider the full life cycle of energy systems, the territorial and international footprint, use a consistent ecosystem service framework that incorporates the value of both market and non-market goods, and consider the spatial and temporal dynamics of both the energy and environmental system. While significant methodological challenges exist, the approach we detail can provide the holistic view of energy and ecosystem services interactions required to inform the future of global energy policy
Measurement of inclusive D*+- and associated dijet cross sections in photoproduction at HERA
Inclusive photoproduction of D*+- mesons has been measured for photon-proton
centre-of-mass energies in the range 130 < W < 280 GeV and a photon virtuality
Q^2 < 1 GeV^2. The data sample used corresponds to an integrated luminosity of
37 pb^-1. Total and differential cross sections as functions of the D*
transverse momentum and pseudorapidity are presented in restricted kinematical
regions and the data are compared with next-to-leading order (NLO) perturbative
QCD calculations using the "massive charm" and "massless charm" schemes. The
measured cross sections are generally above the NLO calculations, in particular
in the forward (proton) direction. The large data sample also allows the study
of dijet production associated with charm. A significant resolved as well as a
direct photon component contribute to the cross section. Leading order QCD
Monte Carlo calculations indicate that the resolved contribution arises from a
significant charm component in the photon. A massive charm NLO parton level
calculation yields lower cross sections compared to the measured results in a
kinematic region where the resolved photon contribution is significant.Comment: 32 pages including 6 figure
Measurement of the diffractive structure function in deep inelastic scattering at HERA
This paper presents an analysis of the inclusive properties of diffractive
deep inelastic scattering events produced in interactions at HERA. The
events are characterised by a rapidity gap between the outgoing proton system
and the remaining hadronic system. Inclusive distributions are presented and
compared with Monte Carlo models for diffractive processes. The data are
consistent with models where the pomeron structure function has a hard and a
soft contribution. The diffractive structure function is measured as a function
of \xpom, the momentum fraction lost by the proton, of , the momentum
fraction of the struck quark with respect to \xpom, and of . The \xpom
dependence is consistent with the form \xpoma where
in all bins of and
. In the measured range, the diffractive structure function
approximately scales with at fixed . In an Ingelman-Schlein type
model, where commonly used pomeron flux factor normalisations are assumed, it
is found that the quarks within the pomeron do not saturate the momentum sum
rule.Comment: 36 pages, latex, 11 figures appended as uuencoded fil
Measurement of Jet Shapes in Photoproduction at HERA
The shape of jets produced in quasi-real photon-proton collisions at
centre-of-mass energies in the range GeV has been measured using the
hadronic energy flow. The measurement was done with the ZEUS detector at HERA.
Jets are identified using a cone algorithm in the plane with a
cone radius of one unit. Measured jet shapes both in inclusive jet and dijet
production with transverse energies GeV are presented. The jet
shape broadens as the jet pseudorapidity () increases and narrows
as increases. In dijet photoproduction, the jet shapes have been
measured separately for samples dominated by resolved and by direct processes.
Leading-logarithm parton-shower Monte Carlo calculations of resolved and direct
processes describe well the measured jet shapes except for the inclusive
production of jets with high and low . The observed
broadening of the jet shape as increases is consistent with the
predicted increase in the fraction of final state gluon jets.Comment: 29 pages including 9 figure
- …