244 research outputs found
Molecular Biology at the Quantum Level: Can Modern Density Functional Theory Forge the Path?
Recent years have seen vast improvements in the ability of rigorous
quantum-mechanical methods to treat systems of interest to molecular biology.
In this review article, we survey common computational methods used to study
such large, weakly bound systems, starting from classical simulations and
reaching to quantum chemistry and density functional theory. We sketch their
underlying frameworks and investigate their strengths and weaknesses when
applied to potentially large biomolecules. In particular, density functional
theory---a framework that can treat thousands of atoms on firm theoretical
ground---can now accurately describe systems dominated by weak van der Waals
interactions. This newfound ability has rekindled interest in using this
tried-and-true approach to investigate biological systems of real importance.
In this review, we focus on some new methods within density functional theory
that allow for accurate inclusion of the weak interactions that dominate
binding in biological macromolecules. Recent work utilizing these methods to
study biologically-relevant systems will be highlighted, and a vision for the
future of density functional theory within molecular biology will be discussed
Positional disorder in ammonia borane at ambient conditions
We solve a long-standing experimental discrepancy of NHBH, which---as
a molecule---has a threefold rotational axis, but in its crystallized form at
room temperature shows a fourfold symmetry about the same axis, creating a
geometric incompatibility. To explain this peculiar experimental result, we
study the dynamics of this system with ab initio Car-Parrinello molecular
dynamics and nudged-elastic-band simulations. We find that rotations, rather
than spatial static disorder, at angular velocities of 2 rev/ps---a time scale
too small to be resolved by standard experimental techniques---are responsible
for the fourfold symmetry
An ab-initio converse NMR approach for pseudopotentials
We extend the recently developed converse NMR approach [T. Thonhauser, D.
Ceresoli, A. Mostofi, N. Marzari, R. Resta, and D. Vanderbilt, J. Chem. Phys.
\textbf{131}, 101101 (2009)] such that it can be used in conjunction with
norm-conserving, non-local pseudopotentials. This extension permits the
efficient ab-initio calculation of NMR chemical shifts for elements other than
hydrogen within the convenience of a plane-wave pseudopotential approach. We
have tested our approach on several finite and periodic systems, finding very
good agreement with established methods and experimental results.Comment: 11 pages, 2 figures, 4 tables; references expande
Orbital magnetization in periodic insulators
Working in the Wannier representation, we derive an expression for the
orbital magnetization of a periodic insulator. The magnetization is shown to be
comprised of two contributions, an obvious one associated with the internal
circulation of bulk-like Wannier functions in the interior, and an unexpected
one arising from net currents carried by Wannier functions near the surface.
Each contribution can be expressed as a bulk property in terms of Bloch
functions in a gauge-invariant way. Our expression is verified by comparing
numerical tight-binding calculations for finite and periodic samples.Comment: submitted to PRL; signs corrected in Eqs. (11), (12), (19), and (20
- …