156 research outputs found

    Pressure-induced Superconductivity in a Ferromagnet UGe2_2 -- Resistivity Measurements in Magnetic Field --

    Full text link
    The electrical resistivity measurements in the magnetic field are carried out on the pressure-induced superconductor UGe2_2. The superconductivity is observed from 1.06 to 1.44 GPa. The upper critical field of HC2H_{C2} is anisotropic where HC2(T)H_{C2}(T) exhibits positive curvature for H//bH//b and cc-axis. The characteristic enhancement of HC2H_{C2} is reconfirmed for H//aH//a-axis. In the temperature and field dependence of resistivity at P>PCP > P_{C} where the ferromagnetic ordering disappears, it is observed that the application of the external field along the {\it a}-axis increases the coefficient of Fermi liquid behavior AT2AT^{2} correspondingly to the metamagnetic transition.Comment: To be published in the proceeding of the International Conference on High Pressure Science and Technology(AIRAPT-18),Beijing,China,23-27 July 200

    Pressure-temperature Phase Diagram of Polycrystalline UCoGe Studied by Resistivity Measurement

    Full text link
    Recently, coexistence of ferromagnetism (T_Curie = 2.8K) and superconductivity (T_sc = 0.8K) has been reported in UCoGe, a compound close to a ferromagnetic instability at ambient pressure P. Here we present resistivity measurements under pressure on a UCoGe polycrystal. The phase diagram obtained from resistivity measurements on a polycrystalline sample is found to be qualitatively different to those of all other ferromagnetic superconductors. By applying high pressure, ferromagnetism is suppressed at a rate of 1.4 K/GPa. No indication of ferromagnetic order has been observed above P ~ 1GPa. The resistive superconducting transition is, however, quite stable in temperature and persists up to the highest measured pressure of about 2.4GPa. Superconductivity would therefore appear also in the paramagnetic phase. However, the appearance of superconductivity seems to change at a characteristic pressure P* ~ 0.8GPa. Close to a ferromagnetic instability, the homogeneity of the sample can influence strongly the electronic and magnetic properties and therefore bulk phase transitions may differ from the determination by resistivity measurements.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Tomonaga-Luttinger Liquid in a Quasi-One-Dimensional S=1 Antiferromagnet Observed by the Specific Heat

    Get PDF
    Specific heat experiments on single crystals of the S=1 quasi-one-dimensional bond-alternating antiferromagnet Ni(C_9H_24N_4)(NO_2)ClO_4, alias NTENP, have been performed in magnetic fields applied both parallel and perpendicular to the spin chains. We have found for the parallel field configuration that the magnetic specific heat (C_mag) is proportional to temperature (T) above a critical field H_c, at which the energy gap vanishes, in a temperature region above that of the long-range ordered state. The ratio C_mag/T increases as the magnetic field approaches H_c from above. The data are in good quantitative agreement with the prediction of the c=1 conformal field theory in conjunction with the velocity of the excitations calculated by a numerical diagonalization, providing a conclusive evidence for a Tomonaga-Luttinger liquid.Comment: 4 pages, 4 postscript figure

    Ferromagnetic phases in spin-Fermion systems

    Full text link
    Spin-Fermion systems which obtain their magnetic properties from a system of localized magnetic moments being coupled to conducting electrons are considered. The dynamical degrees of freedom are spin-ss operators of localized spins and spin-1/2 Fermi operators of itinerant electrons. Renormalized spin-wave theory, which accounts for the magnon-magnon interaction, and its extension are developed to describe the two ferrimagnetic phases in the system: low temperature phase 0<T<T0<T<T^{*}, where all electrons contribute the ordered ferromagnetic moment, and high temperature phase T<T<TCT^{*}<T<T_C, where only localized spins form magnetic moment. The magnetization as a function of temperature is calculated. The theoretical predictions are utilize to interpret the experimentally measured magnetization-temperature curves of UGe2UGe_2..Comment: 9 pages, 5 figure

    Specific Heat Study of an S=1/2 Alternating Heisenberg Chain System F_5PNN Under Magnetic Field

    Get PDF
    We have measured the specific heat of an S=1/2 antiferromagnetic alternating Heisenberg chain pentafulorophenyl nitronyl nitroxide under magnetic fields up to H>H_C2. This compound has the field-induced magnetic ordered (FIMO) phase between H_C1 and H_C2. Characteristic behaviors are observed depending on the magnetic field up to above H_C2 outside of the H-T boundary for the FIMO. Temperature and field dependence of the specific heat are qualitatively in good agreement with the theoretical calculation on an S=1/2 two-leg ladder. [Wang et al. Phys. Rev. Lett 84 5399 (2000)] This agreement suggests that the observed behaviors are related with the low-energy excitation in the Tomonaga-Luttinger liquid.Comment: 4pages, 4figures, replaced with revised version accepted to Physical Review Letter

    The Magnetic Phase Diagram and the Pressure and Field Dependence of the Fermi Surface in UGe2_2

    Full text link
    The ac susceptibility and de Haas-van Alphen (dHvA) effect in UGe2_2 are measured at pressures {\it P} up to 17.7 kbar for the magnetic field {\it B} parallel to the {\it a} axis, which is the easy axis of magnetization. Two anomalies are observed at {\it Bx_x}({\it P}) and {\it B}m_m({\it P}) ({\it Bx_x} >> {\it B}m_m at any {\it P}), and the {\it P}-{\it B} phase diagram is presented. The Fermi surface and quasiparticle mass are found to vary smoothly with pressure up to 17.7 kbar unless the phase boundary {\it Bx_x}({\it P}) is crossed. The observed dHvA frequencies may be grouped into three according to their pressure dependences, which are largely positive, nearly constant or negative. It is suggested that the quasiparticle mass moderately increases as the boundary {\it Bx_x}({\it P}) is approached. DHvA effect measurements are also performed across the boundary at 16.8 kbar.Comment: to be published in Phys. Rev.

    Specific heat of the S=1S = 1 spin-dimer antiferromagnet Ba3_3Mn2_2O8_8 in high magnetic fields

    Full text link
    We have measured the specific heat of the coupled spin-dimer antiferromagnet Ba3_3Mn2_2O8_8 to 50 mK in temperature and to 29 T in the magnetic field. The experiment extends to the midpoint of the field region (25.9 T H\leq H \leq 32.3 T) of the magnetization plateau at 1/2 of the saturation magnetization, and reveals the presence of three ordered phases in the field region between that of the magnetization plateau and the low-field spin-liquid region. The exponent of the phase boundary with the thermally disordered region is smaller than the theoretical value based on the Bose-Einstein condensation of spin triplets. At zero field and 29 T, the specific-heat data show gapped behaviors characteristic of spin liquids. The zero-field data indicate that the gapped triplet excitations form two levels whose energies differ by nearly a factor of two. At least the lower level is well localized. The data at 29 T reveal that the low-lying excitations at the magnetization plateau are weakly delocalized.Comment: 6 pages, 5 figures, revised versio

    Magnetic Properties of a Pressure-induced Superconductor UGe2_2

    Full text link
    We performed the DC-magnetization and neutron scattering experiments under pressure {\it P} for a pressure-induced superconductor UGe2_2. We found that the magnetic moment is enhanced at a characteristic temperature {\it T}^{*} in the ferromagnetic state, where {\it T}^{*} is smaller than a Curie temperature {\it T}C_{\rm C}. This enhancement becomes remarkable in the vicinity of {\it P}C_{\rm C}^{*} = 1.20 GPa, where {\it T}^{*} becomes 0 K and the superconducting transition temperature {\it T}SC_{\rm SC} shows a maximum. The characteristic temperature {\it T}^{*}, which decreases with increasing pressure, also depends on the magnetic field.Comment: To be published in J.Phys.Soc.Jp
    corecore