285 research outputs found

    Penerapan Model Pembelajaran Kooperatif Tipe Stad untuk Meningkatkan Hasil Belajar Matematika Siswa Kelas Viia SMP An-namiroh Pekanbaru

    Full text link
    This research aims to improve the learning process and increase the student's mathematics learning outcomes through the implementation Cooperative Learning of STAD. This type of research is the Classroom Action Research with two cycle. The research was conducted in class VIIA SMP An-Namiroh Pekanbaru in the odd semester of the 2016/2017 academic year with the subject of as many as 29 students, consist of 14 boys and 15 girls. The research instrument consists of learning devices and instrument data collectors. Learning device used in this research is the Syllabus, Lesson Plan and Worksheet. The instrument data collector used in this research is the observation sheet and math achievement test. Data analysis technique used is descriptive statistical analysis. Based on the result of the research showed that implementation of learning process on cycle II had happened improvement from implementation on cycle I. Weakness on cycle I is improved on implementation cycle II according with planning of improvement after reflection cycle I. Number of students that reach Minimum Mastery Criteria increase from basic score to daily test II. The number of students who reach Minimum Mastery Criteria on basic scor, daily test I and daily test II are respectively 14 person (48%), 16 person (55%) and 20 person (69%). Results of this research indicates that application of Cooperative Learning of STAD can improve learning process and increase mathematics learning outcomes from the students at class VIIA SMP An-Namiroh Pekanbaru in the odd semester academic years 2016/2017 at Basic Competencies 2.1 Knowing the algebra and it's elements, and 2.2 Doing algebra operation

    Soap Froths and Crystal Structures

    Full text link
    We propose a physical mechanism to explain the crystal symmetries found in macromolecular and supramolecular micellar materials. We argue that the packing entropy of the hard micellar cores is frustrated by the entropic interaction of their brush-like coronas. The latter interaction is treated as a surface effect between neighboring Voronoi cells. The observed crystal structures correspond to the Kelvin and Weaire-Phelan minimal foams. We show that these structures are stable for reasonable areal entropy densities.Comment: 4 pages, RevTeX, 2 included eps figure

    Highly dynamic marine redox state through the Cambrian explosion highlighted by authigenic δ²³⁸U records

    Get PDF
    The history of oceanic oxygenation from the late Neoproterozoic to the early Cambrian is currently debated, making it difficult to gauge whether, and to what extent environmental triggers played a role in shaping the trajectory of metazoan diversification. Uranium isotope (U) records from carbonates have recently been used to argue for significant swings in the global marine redox state from the late Neoproterozoic to the early Cambrian. However, geochemical signatures in carbonates—the U isotope archive most commonly employed to argue for redox shifts—are susceptible to diagenetic alteration and may have variable offsets from seawater values. Therefore, there is an impetus to reconstruct seawater U isotopic evolution using another sedimentary archive, in order to verify that these excursions can indeed be linked to global shifts in marine redox landscape. Here we report new U isotope data from two fine-grained siliciclastic upper Ediacaran to lower Cambrian (ca. 551–515 Ma) successions in South China. We find large δ²³⁸U swings between -0.63‰ and +0.39‰ for calculated values of authigenic U in the siliciclastic rocks, consistent with correlative records from the carbonates. The replication of these patterns in both carbonate and siliciclastic units provides confirmatory evidence that the early Cambrian seawater was characterized by highly variable U isotope compositions. These new δ²³⁸U data also provide higher-resolution records of global oceanic redox conditions during Cambrian Age 3, coeval with a critical interval of the Cambrian explosion. These δ²³⁸U data bolster the case that the Ediacaran-Cambrian transition experienced massive swings in marine redox state, providing a dynamic environmental backdrop for and potentially even a key driver of the emergence and radiation of metazoans

    Role of cellular senescence and NOX4-mediated oxidative stress in systemic sclerosis pathogenesis.

    Get PDF
    Systemic sclerosis (SSc) is a systemic autoimmune disease characterized by progressive fibrosis of skin and numerous internal organs and a severe fibroproliferative vasculopathy resulting frequently in severe disability and high mortality. Although the etiology of SSc is unknown and the detailed mechanisms responsible for the fibrotic process have not been fully elucidated, one important observation from a large US population study was the demonstration of a late onset of SSc with a peak incidence between 45 and 54 years of age in African-American females and between 65 and 74 years of age in white females. Although it is not appropriate to consider SSc as a disease of aging, the possibility that senescence changes in the cellular elements involved in its pathogenesis may play a role has not been thoroughly examined. The process of cellular senescence is extremely complex, and the mechanisms, molecular events, and signaling pathways involved have not been fully elucidated; however, there is strong evidence to support the concept that oxidative stress caused by the excessive generation of reactive oxygen species may be one important mechanism involved. On the other hand, numerous studies have implicated oxidative stress in SSc pathogenesis, thus, suggesting a plausible mechanism in which excessive oxidative stress induces cellular senescence and that the molecular events associated with this complex process play an important role in the fibrotic and fibroproliferative vasculopathy characteristic of SSc. Here, recent studies examining the role of cellular senescence and of oxidative stress in SSc pathogenesis will be reviewed

    Distribution of Spoligotyping Defined Genotypic Lineages among Drug-Resistant Mycobacterium tuberculosis Complex Clinical Isolates in Ankara, Turkey

    Get PDF
    Background: Investigation of genetic heterogeneity and spoligotype-defined lineages of drug-resistant Mycobacterium tuberculosis clinical isolates collected during a three-year period in two university hospitals and National Tuberculosis Reference and Research Laboratory in Ankara, Turkey. Methods and Findings: A total of 95 drug-resistant M. tuberculosis isolates collected from three different centers were included in this study. Susceptibility testing of the isolates to four major antituberculous drugs was performed using proportion method on Löwenstein–Jensen medium and BACTEC 460-TB system. All clinical isolates were typed by using spoligotyping and IS6110-restriction fragment length polymorphism (RFLP) methods. Seventy-three of the 95 (76.8%) drug resistant M. tuberculosis isolates were isoniazid-resistant, 45 (47.4%) were rifampicin-resistant, 32 (33.7%) were streptomycinresistant and 31 (32.6%) were ethambutol-resistant. The proportion of multidrug-resistant isolates (MDR) was 42.1%. By using spoligotyping, 35 distinct patterns were observed; 75 clinical isolates were grouped in 15 clusters (clustering rate of 79%) and 20 isolates displayed unique patterns. Five of these 20 unique patterns corresponded to orphan patterns in th

    Early Palaeozoic ocean anoxia and global warming driven by the evolution of shallow burrowing

    Get PDF
    The evolution of burrowing animals forms a defining event in the history of the Earth. It has been hypothesised that the expansion of seafloor burrowing during the Palaeozoic altered the biogeochemistry of the oceans and atmosphere. However, whilst potential impacts of bioturbation on the individual phosphorus, oxygen and sulphur cycles have been considered, combined effects have not been investigated, leading to major uncertainty over the timing and magnitude of the Earth system response to the evolution of bioturbation. Here we integrate the evolution of bioturbation into the COPSE model of global biogeochemical cycling, and compare quantitative model predictions to multiple geochemical proxies. Our results suggest that the advent of shallow burrowing in the early Cambrian contributed to a global low-oxygen state, which prevailed for ~100 million years. This impact of bioturbation on global biogeochemistry likely affected animal evolution through expanded ocean anoxia, high atmospheric CO2 levels and global warming
    corecore