56 research outputs found
Superpulsed low-level laser therapy protects skeletal muscle of mdx mice against damage, inflammation and morphological changes delaying dystrophy progression.
Aim: To evaluate the effects of preventive treatment with low-level laser therapy (LLLT) on progression of dystrophy in mdx mice. Methods: Ten animals were randomly divided into 2 experimental groups treated with superpulsed LLLT (904 nm, 15 mW, 700 Hz, 1 J) or placebo-LLLT at one point overlying the tibialis anterior muscle (bilaterally) 5 times per week for 14 weeks (from 6th to 20th week of age). Morphological changes, creatine kinase (CK) activity and mRNA gene expression were assessed in animals at 20th week of age. Results: Animals treated with LLLT showed very few morphological changes in skeletal muscle, with less atrophy and fibrosis than animals treated with placebo-LLLT. CK was significantly lower (p = 0.0203) in animals treated with LLLT (864.70 U.l−1, SEM 226.10) than placebo (1708.00 U.l−1, SEM 184.60). mRNA gene expression of inflammatory markers was significantly decreased by treatment with LLLT (p<0.05): TNF-α (placebo-control = 0.51 µg/µl [SEM 0.12], - LLLT = 0.048 µg/µl [SEM 0.01]), IL-1β (placebo-control = 2.292 µg/µl [SEM 0.74], - LLLT = 0.12 µg/µl [SEM 0.03]), IL-6 (placebo-control = 3.946 µg/µl [SEM 0.98], - LLLT = 0.854 µg/µl [SEM 0.33]), IL-10 (placebo-control = 1.116 µg/µl [SEM 0.22], - LLLT = 0.352 µg/µl [SEM 0.15]), and COX-2 (placebo-control = 4.984 µg/µl [SEM 1.18], LLLT = 1.470 µg/µl [SEM 0.73]). Conclusion: Irradiation of superpulsed LLLT on successive days five times per week for 14 weeks decreased morphological changes, skeletal muscle damage and inflammation in mdx mice. This indicates that LLLT has potential to decrease progression of Duchenne muscular dystrophy
Wolbachia Infections Are Virulent and Inhibit the Human Malaria Parasite Plasmodium Falciparum in Anopheles Gambiae
Endosymbiotic Wolbachia bacteria are potent modulators of pathogen infection and transmission in multiple naturally and artificially infected insect species, including important vectors of human pathogens. Anopheles mosquitoes are naturally uninfected with Wolbachia, and stable artificial infections have not yet succeeded in this genus. Recent techniques have enabled establishment of somatic Wolbachia infections in Anopheles. Here, we characterize somatic infections of two diverse Wolbachia strains (wMelPop and wAlbB) in Anopheles gambiae, the major vector of human malaria. After infection, wMelPop disseminates widely in the mosquito, infecting the fat body, head, sensory organs and other tissues but is notably absent from the midgut and ovaries. Wolbachia initially induces the mosquito immune system, coincident with initial clearing of the infection, but then suppresses expression of immune genes, coincident with Wolbachia replication in the mosquito. Both wMelPop and wAlbB significantly inhibit Plasmodium falciparum oocyst levels in the mosquito midgut. Although not virulent in non-bloodfed mosquitoes, wMelPop exhibits a novel phenotype and is extremely virulent for approximately 12–24 hours post-bloodmeal, after which surviving mosquitoes exhibit similar mortality trajectories to control mosquitoes. The data suggest that if stable transinfections act in a similar manner to somatic infections, Wolbachia could potentially be used as part of a strategy to control the Anopheles mosquitoes that transmit malaria
Facultative Symbiont Infections Affect Aphid Reproduction
Some bacterial symbionts alter their hosts reproduction through various mechanisms that enhance their transmission in the host population. In addition to its obligatory symbiont Buchnera aphidicola, the pea aphid Acyrthosiphon pisum harbors several facultative symbionts influencing several aspects of host ecology. Aphids reproduce by cyclical parthenogenesis whereby clonal and sexual reproduction alternate within the annual life cycle. Many species, including the pea aphid, also show variation in their reproductive mode at the population level, with some lineages reproducing by cyclical parthenogenesis and others by permanent parthenogenesis. While the role of facultative symbionts has been well studied during the parthenogenetic phase of their aphid hosts, very little is known on their possible influence during the sexual phase. Here we investigated whether facultative symbionts modulate the capacity to produce sexual forms in various genetic backgrounds of the pea aphid with controlled symbiont composition and also in different aphid genotypes from natural populations with previously characterized infection status and reproductive mode. We found that most facultative symbionts exhibited detrimental effects on their hosts fitness under sex-inducing conditions in comparison with the reference lines. We also showed that the loss of sexual phase in permanently parthenogenetic lineages of A. pisum was not explained by facultative symbionts. Finally, we demonstrated that Spiroplasma infection annihilated the production of males in the host progeny by inducing a male-killing phenotype, an unexpected result for organisms such as aphids that reproduce primarily through clonal reproduction
Essential role of microfibrillar-associated protein 4 in human cutaneous homeostasis and in its photoprotection
UVB-induced cutaneous photodamage/photoaging is characterized by qualitative and quantitative deterioration in dermal extracellular matrix (ECM) components such as collagen and elastic fibers. Disappearance of microfibrillar-associated protein 4 (MFAP-4), a possible limiting factor for cutaneous elasticity, was documented in photoaged dermis, but its function is poorly understood. To characterize its possible contribution to photoprotection, MFAP-4 expression was either augmented or inhibited in a human skin xenograft photodamage murine model and human fibroblasts. Xenografted skin with enhanced MFAP-4 expression was protected from UVB-induced photodamage/photoaging accompanied by the prevention of ECM degradation and aggravated elasticity. Additionally, remarkably increased or decreased fibrillin-1-based microfibril development was observed when fibroblasts were treated with recombinant MFAP-4 or with MFAP-4-specific siRNA, respectively. Immunoprecipitation analysis confirmed direct interaction between MFAP-4 and fibrillin-1. Taken together, our findings reveal the essential role of MFAP-4 in photoprotection and offer new therapeutic opportunities to prevent skin-associated pathologies
Acetyl hexapeptide-3 in a cosmetic formulation acts on skin mechanical properties - clinical study
abstract Acetyl hexapeptide-3 has been used in anti-aging topical formulations aimed at improving skin appearance. However, few basic studies address its effects on epidermis and dermis, when vehiculated in topical formulations. Thus, the objective of this study was to determine the clinical efficacy of acetyl hexapeptide-3 using biophysical techniques. For this purpose, formulations with and without acetyl hexapeptide-3 were applied to the ventral forearm and the face area of forty female volunteers. Skin conditions were evaluated after 2 and 4-week long daily applications, by analyzing the stratum corneum water content and the skin mechanical properties, using three instruments, the Corneometer(r) CM 825, CutometerSEM 575 and ReviscometerRV600. All formulations tested increased the stratum corneum water content in the face region, which remained constant until the end of the study. In contrast, only formulations containing acetyl hexapeptide-3 exhibit a significant effect on mechanical properties, by decreasing the anisotropy of the face skin. No significant effects were observed in viscoelasticity parameters. In conclusion, the effects of acetyl hexapeptide-3 on the anisotropy of face skin characterize the compound as an effective ingredient for improving conditions of the cutaneous tissue, when used in anti-aging cosmetic formulations
Age- and Body Mass Index-Related Changes in Cutaneous Shear Wave Velocity
BACKGROUND: The in vivo visco-elastic characteristics of skin depend on a series of physiopathological parameters. Among them, the age-related intrinsic tensile properties and the preconditioning of the tissues set under tension by the hypodermal volume might be of importance. AIMS: To revisit the influence of age and body mass on the firmness and mechanical anisotropy of the skin as determined by the velocity of the shear wave propagation. METHOD: Resonance running time measurements (RRTM) were performed on the mid volar forearm in 110 adults of both sexes. In each subject 16 RRTM were collected at four different precise angles with regard to the limb axis. We recorded the lowest, the highest and the mean multidirectional RRTM as well as the coefficient of variation (CV) of the latter value. In addition, the body mass index (BMI) was calculated. RESULTS: Age and BMI did not influence the minimum RRTM. In contrast, the maximum RRTM as well as the mean and CV of the multidirectional RRTM, significantly rose in a progressively increasing proportion of the subjects older than 60 years. These changes were only encountered in subjects with a normal BMI ranging from 18 to 25. Sex-related differences were not disclosed. CONCLUSIONS: The intrinsic skin tension lines identified by the minimum RRTM are not significantly altered with age and BMI variations. In contrast, skin laxity identified by larger maximum and mean multidirectional RRTM may increase after 60 years of age in subjects with a normal BMI. This is accompanied by increased skin mechanical anisotropy identified by CV values of the multidirectional RRTM over 40%
MULTI-WEIGHTED MONETARY TRANSACTION NETWORK
This paper aims to both develop and apply advances from the field of complex networks to large economic systems and explore the (dis)similarities between economic systems and other real-world complex networks. For the first time, the nature and evolution of the Dutch economy are captured by means of a data set analysis that describes the monetary transactions among 105 economical activity clusters over the period 1987–2007. We propose to represent this data set as a multi-weighted network, called the monetary transaction network. Each node represents a unique activity cluster. Nodes are interconnected via monetary transactions. The millions of euros that traverse the links and that circulate inside each activity cluster are denoted by a link weight and a node weight respectively. By applying innovative methodologies from network theory, we observe important features of the monetary transaction network as well as its evolution: (a) Activity clusters with a large internal flow tend to cooperate with many other clusters via high volume monetary transactions. (b) Activity clusters with a lower internal transaction volume prefer to transact with fewer neighboring nodes that have a higher internal flow. (c) The node weights seem to follow a power law distribution. Surprisingly, (b) and (c) have been observed in community structures of many real-world networks as well. (d) Activity clusters tend to balance the monetary volume of their transactions with their neighbors, reflected by a positive link weight correlation around each node. This correlation becomes stronger over time while the number of links increases over time as well.Complex network, monetary transaction network, weighted network, mode weight
- …