843 research outputs found

    The mechanism of double exponential growth in hyper-inflation

    Full text link
    Analyzing historical data of price indices we find an extraordinary growth phenomenon in several examples of hyper-inflation in which price changes are approximated nicely by double-exponential functions of time. In order to explain such behavior we introduce the general coarse-graining technique in physics, the Monte Carlo renormalization group method, to the price dynamics. Starting from a microscopic stochastic equation describing dealers' actions in open markets we obtain a macroscopic noiseless equation of price consistent with the observation. The effect of auto-catalytic shortening of characteristic time caused by mob psychology is shown to be responsible for the double-exponential behavior.Comment: 9 pages, 5 figures and 2 tables, submitted to Physica

    The Grounds For Time Dependent Market Potentials From Dealers' Dynamics

    Full text link
    We apply the potential force estimation method to artificial time series of market price produced by a deterministic dealer model. We find that dealers' feedback of linear prediction of market price based on the latest mean price changes plays the central role in the market's potential force. When markets are dominated by dealers with positive feedback the resulting potential force is repulsive, while the effect of negative feedback enhances the attractive potential force.Comment: 9 pages, 3 figures, proceedings of APFA

    Neutrino texture saturating the CP asymmetry

    Get PDF
    We study a neutrino mass texture which can explain the neutrino oscillation data and also saturate the upper bound of the CP asymmetry ϵ1\epsilon_1 in the leptogenesis. We consider the thermal and non-thermal leptogenesis based on the right-handed neutrino decay in this model. A lower bound of the reheating temperature required for the explanation of the baryon number asymmetry is estimated as O(108)O(10^8)GeV for the thermal leptogenesis and O(106)O(10^{6})GeV for the non-thermal one.It can be lower than the upper bound of the reheating temperature imposed by the cosmological gravitino problem. An example of the construction of the discussed texture is also presented.Comment: 23 pages, 6 figure

    Effect of spatial bias on the nonequilibrium phase transition in a system of coagulating and fragmenting particles

    Full text link
    We examine the effect of spatial bias on a nonequilibrium system in which masses on a lattice evolve through the elementary moves of diffusion, coagulation and fragmentation. When there is no preferred directionality in the motion of the masses, the model is known to exhibit a nonequilibrium phase transition between two different types of steady states, in all dimensions. We show analytically that introducing a preferred direction in the motion of the masses inhibits the occurrence of the phase transition in one dimension, in the thermodynamic limit. A finite size system, however, continues to show a signature of the original transition, and we characterize the finite size scaling implications of this. Our analysis is supported by numerical simulations. In two dimensions, bias is shown to be irrelevant.Comment: 7 pages, 7 figures, revte

    Exact Phase Diagram of a model with Aggregation and Chipping

    Full text link
    We revisit a simple lattice model of aggregation in which masses diffuse and coalesce upon contact with rate 1 and every nonzero mass chips off a single unit of mass to a randomly chosen neighbour with rate ww. The dynamics conserves the average mass density ρ\rho and in the stationary state the system undergoes a nonequilibrium phase transition in the (ρw)(\rho-w) plane across a critical line ρc(w)\rho_c(w). In this paper, we show analytically that in arbitrary spatial dimensions, ρc(w)=w+11\rho_c(w) = \sqrt{w+1}-1 exactly and hence, remarkably, independent of dimension. We also provide direct and indirect numerical evidence that strongly suggest that the mean field asymptotic answer for the single site mass distribution function and the associated critical exponents are super-universal, i.e., independent of dimension.Comment: 11 pages, RevTex, 3 figure

    Propagation and Extinction in Branching Annihilating Random Walks

    Full text link
    We investigate the temporal evolution and spatial propagation of branching annihilating random walks in one dimension. Depending on the branching and annihilation rates, a few-particle initial state can evolve to a propagating finite density wave, or extinction may occur, in which the number of particles vanishes in the long-time limit. The number parity conserving case where 2-offspring are produced in each branching event can be solved exactly for unit reaction probability, from which qualitative features of the transition between propagation and extinction, as well as intriguing parity-specific effects are elucidated. An approximate analysis is developed to treat this transition for general BAW processes. A scaling description suggests that the critical exponents which describe the vanishing of the particle density at the transition are unrelated to those of conventional models, such as Reggeon Field Theory. P. A. C. S. Numbers: 02.50.+s, 05.40.+j, 82.20.-wComment: 12 pages, plain Te

    Long-term power-law fluctuation in Internet traffic

    Get PDF
    Power-law fluctuation in observed Internet packet flow are discussed. The data is obtained by a multi router traffic grapher (MRTG) system for 9 months. The internet packet flow is analyzed using the detrended fluctuation analysis. By extracting the average daily trend, the data shows clear power-law fluctuations. The exponents of the fluctuation for the incoming and outgoing flow are almost unity. Internet traffic can be understood as a daily periodic flow with power-law fluctuations.Comment: 10 pages, 8 figure

    Dynamical Phase Transition in One Dimensional Traffic Flow Model with Blockage

    Full text link
    Effects of a bottleneck in a linear trafficway is investigated using a simple cellular automaton model. Introducing a blockage site which transmit cars at some transmission probability into the rule-184 cellular automaton, we observe three different phases with increasing car concentration: Besides the free phase and the jam phase, which exist already in the pure rule-184 model, the mixed phase of these two appears at intermediate concentration with well-defined phase boundaries. This mixed phase, where cars pile up behind the blockage to form a jam region, is characterized by a constant flow. In the thermodynamic limit, we obtain the exact expressions for several characteristic quantities in terms of the car density and the transmission rate. These quantities depend strongly on the system size at the phase boundaries; We analyse these finite size effects based on the finite-size scaling.Comment: 14 pages, LaTeX 13 postscript figures available upon request,OUCMT-94-
    corecore