59 research outputs found

    The ML1Nx2 phosphatidylinositol 3,5-bisphosphate probe shows poor selectivity in cells

    Get PDF
    Phosphatidylinositol (3,5)-bisphosphate (PtdIns(3,5)P2) is a quantitatively minor phospholipid in eukaryotic cells that plays a fundamental role in regulating endocytic membrane traffic. Despite its clear importance for cellular function and organism physiology, mechanistic details of its biology have so far not been fully elucidated. In part, this is due to a lack of experimental tools that specifically probe for PtdIns(3,5)P2 in cells to unambiguously identify its dynamics and site(s) of action. In this study, we have evaluated a recently reported PtdIns(3,5)P2 biosensor, GFP-ML1Nx2, for its veracity as such a probe. We report that, in live cells, the localization of this biosensor to sub-cellular compartments is largely independent of PtdIns(3,5)P2, as assessed after pharmacological, chemical genetic or genomic interventions that block the lipid's synthesis. We therefore conclude that it is unwise to interpret the localization of ML1Nx2 as a true and unbiased biosensor for PtdIns(3,5)P2

    Integrating linkage and radiation hybrid mapping data for bovine chromosome 15

    Get PDF
    BACKGROUND: Bovine chromosome (BTA) 15 contains a quantitative trait loci (QTL) for meat tenderness, as well as several breaks in synteny with human chromosome (HSA) 11. Both linkage and radiation hybrid (RH) maps of BTA 15 are available, but the linkage map lacks gene-specific markers needed to identify genes underlying the QTL, and the gene-rich RH map lacks associations with marker genotypes needed to define the QTL. Integrating the maps will provide information to further explore the QTL as well as refine the comparative map between BTA 15 and HSA 11. A recently developed approach to integrating linkage and RH maps uses both linkage and RH data to resolve a consensus marker order, rather than aligning independently constructed maps. Automated map construction procedures employing this maximum-likelihood approach were developed to integrate BTA RH and linkage data, and establish comparative positions of BTA 15 markers with HSA 11 homologs. RESULTS: The integrated BTA 15 map represents 145 markers; 42 shared by both data sets, 36 unique to the linkage data and 67 unique to RH data. Sequence alignment yielded comparative positions for 77 bovine markers with homologs on HSA 11. The map covers approximately 32% of HSA 11 sequence in five segments of conserved synteny, another 15% of HSA 11 is shared with BTA 29. Bovine and human order are consistent in portions of the syntenic segments, but some rearrangement is apparent. Comparative positions of gene markers near the meat tenderness QTL indicate the region includes separate segments of HSA 11. The two microsatellite markers flanking the QTL peak are between defined syntenic segments. CONCLUSIONS: Combining data to construct an integrated map not only consolidates information from different sources onto a single map, but information contributed from each data set increases the accuracy of the map. Comparison of bovine maps with well annotated human sequence can provide useful information about genes near mapped bovine markers, but bovine gene order may be different than human. Procedures to connect genetic and physical mapping data, build integrated maps for livestock species, and connect those maps to more fully annotated sequence can be automated, facilitating the maintenance of up-to-date maps, and providing a valuable tool to further explore genetic variation in livestock

    Levels and Concentration Ratios of Polychlorinated Biphenyls and Polybrominated Diphenyl Ethers in Serum and Breast Milk in Japanese Mothers

    Get PDF
    Blood and/or breast milk have been used to assess human exposure to various environmental contaminants. Few studies have been available to compare the concentrations in one matrix with those in another. The goals of this study were to determine the current levels of polybrominated diphenyl ethers (PBDEs) and polychlorinated biphenyls (PCBs) in Japanese women, with analysis of the effects of lifestyle and dietary habits on these levels, and to develop a quantitative structure–activity relationship (QSAR) with which to predict the ratio of serum concentration to breast milk concentration. We measured PBDEs and PCBs in 89 paired samples of serum and breast milk collected in four regions of Japan in 2005. The geometric means of the total concentrations of PBDE (13 congeners) in milk and serum were 1.56 and 2.89 ng/g lipid, respectively, whereas those of total PCBs (15 congeners) were 63.9 and 37.5 ng/g lipid, respectively. The major determinant of total PBDE concentration in serum and milk was the geographic area within Japan, whereas nursing duration was the major determinant of PCB concentration. BDE-209 was the most predominant PBDE congener in serum but not in milk. The excretion of BDE 209 in milk was lower than that of BDE 47 and BDE 153. QSAR analysis revealed that two parameters, calculated octanol/water partition and number of hydrogen-bond acceptors, were significant descriptors. During the first weeks of lactation, the predicted partitioning of PBDE and PCB congeners from serum to milk agreed with the observed values. However, the prediction became weaker after 10 weeks of nursing

    Phosphoinositide 3-Kinaseγ Controls the Intracellular Localization of CpG to Limit DNA-PKcs-Dependent IL-10 Production in Macrophages

    Get PDF
    Synthetic oligodeoxynucleotides containing unmethylated CpG motifs (CpG) stimulate innate immune responses. Phosphoinositide 3-kinase (PI3K) has been implicated in CpG-induced immune activation; however, its precise role has not yet been clarified. CpG-induced production of IL-10 was dramatically increased in macrophages deficient in PI3Kγ (p110γ−/−). By contrast, LPS-induced production of IL-10 was unchanged in the cells. CpG-induced, but not LPS-induced, IL-10 production was almost completely abolished in SCID mice having mutations in DNA-dependent protein kinase catalytic subunit (DNA-PKcs). Furthermore, wortmannin, an inhibitor of DNA-PKcs, completely inhibited CpG-induced IL-10 production, both in wild type and p110γ−/− cells. Microscopic analyses revealed that CpG preferentially localized with DNA-PKcs in p110γ−/− cells than in wild type cells. In addition, CpG was preferentially co-localized with the acidic lysosomal marker, LysoTracker, in p110γ−/− cells, and with an early endosome marker, EEA1, in wild type cells. Over-expression of p110γ in Cos7 cells resulted in decreased acidification of CpG containing endosome. A similar effect was reproduced using kinase-dead mutants, but not with a ras-binding site mutant, of p110γ. Thus, it is likely that p110γ, in a manner independent of its kinase activity, inhibits the acidification of CpG-containing endosomes. It is considered that increased acidification of CpG-containing endosomes in p110γ−/− cells enforces endosomal escape of CpG, which results in increased association of CpG with DNA-PKcs to up-regulate IL-10 production in macrophages
    corecore