18 research outputs found

    Li+ protects nerve cells against destabilization of Ca2+ homeostasis and delayed death caused by removal of external Na+

    Get PDF
    AbstractIn experiments with fura-2 loaded cultured rat cerebellar granule cells we have compared the changes in [Ca2+]i homeostasis produced by replacement of external Na+ with the organic cation N-methyl-d-glucamine (NMDG) or Li+. The Na+/NMDG replacement caused an increase in baseline [Ca2+]i and a considerable delay in [Ca2+]i recovery following a glutamate (Glu) pulse in almost all the cells. In contrast Na+/Li+ replacement usually did not change baseline [Ca2+]i and produced only a small (if any) delay in the post-glutamate [Ca2+]i recovery. Previously [Storozhevykh et al. (1998) FEBS Lett. 431, 215–218] we revealed that perturbation of [Ca2+]i homeostasis caused by Na+/NMDG replacement cannot be explained by a reversal of the Na+/Ca2+ exchange but is mainly due to Ca2+ influx through NMDA channels activated by Na+ dependent release of endogenous excitatory amino acids (`reversed Glu uptake'). In the present work we confirmed this conclusion and obtained evidence suggesting that in contrast to NMDG Li+ interferes with the `reversed Glu uptake' triggered by removal of external Na+. Thus it has been shown that the addition of Li+ (20 mM) to a Na+-free NMDGcontaining solution suppressed both the perturbation of [Ca2+]i homeostasis and delayed neuronal death caused by Na+/NMDG replacement. Li+ is also able to abolish the [Ca2+]i response induced by PDC which at high concentrations (>200 μM) is shown to stimulate the release of endogenous Glu. In contrast to Na+/Li+, Na+/NMDG replacement greatly enhances [Ca2+]i increase caused by PDC. Control experiments showed that Na+/Li+ replacement does not decrease the [Ca2+]i response to the Glu pulse. Therefore we concluded that a considerable quantitative difference between the effects of Na+/NMDG and Na+/Li+ replacements on both [Ca2+]i homeostasis and cell viability resulted mainly from the ability of Li+ to attenuate the release of endogenous Glu in response to the removal of external Na+

    Hypothalamic Reactive Oxygen Species Are Required for Insulin-Induced Food Intake Inhibition: An NADPH Oxidase–Dependent Mechanism

    Get PDF
    1939-327X (Electronic) Journal Article Research Support, Non-U.S. Gov'tOBJECTIVE: Insulin plays an important role in the hypothalamic control of energy balance, especially by reducing food intake. Emerging data point to a pivotal role of reactive oxygen species (ROS) in energy homeostasis regulation, but their involvement in the anorexigenic effect of insulin is unknown. Furthermore, ROS signal derived from NADPH oxidase activation is required for physiological insulin effects in peripheral cells. In this study, we investigated the involvement of hypothalamic ROS and NADPH oxidase in the feeding behavior regulation by insulin. RESEARCH DESIGN AND METHODS: We first measured hypothalamic ROS levels and food intake after acute intracerebroventricular injection of insulin. Second, effect of pretreatment with a ROS scavenger or an NADPH oxidase inhibitor was evaluated. Third, we examined the consequences of two nutritional conditions of central insulin unresponsiveness (fasting or short-term high-fat diet) on the ability of insulin to modify ROS level and food intake. RESULTS: In normal chow-fed mice, insulin inhibited food intake. At the same dose, insulin rapidly and transiently increased hypothalamic ROS levels by 36%. The pharmacological suppression of this insulin-stimulated ROS elevation, either by antioxidant or by an NADPH oxidase inhibitor, abolished the anorexigenic effect of insulin. Finally, in fasted and short-term high-fat diet-fed mice, insulin did not promote elevation of ROS level and food intake inhibition, likely because of an increase in hypothalamic diet-induced antioxidant defense systems. CONCLUSIONS: A hypothalamic ROS increase through NADPH oxidase is required for the anorexigenic effect of insulin

    Role of Na+/Ca2+ exchange in regulation of neuronal Ca2+ homeostasis requires re-evaluation

    Get PDF
    AbstractIn cultured rat cerebellar granule cells an inhibition of plasma membrane Na+/Ca2+ exchange by removal of external Na+ (replacement with NMDG) caused an increase in [Ca2+]i at rest and a considerable delay in [Ca2+]i recovery from Glu-imposed [Ca2+]i load. These effects did not result from Ca2+ influx through reversed Na+/Ca2+ exchange since they were readily abolished or prevented by using the NMDA receptor inhibitor AP-5 (100 μM) or the NMDA channel blocker memantine (25–50 μM). The effect of Na+/NMDG replacement could be enhanced by: (1) an increase in cytoplasmic Na+ concentration by monensin pretreatment of neurons; (2) external alkalinity, pH 8.5; (3) blockade of the mitochondrial Ca2+ uptake with antimycin plus oligomycin. Analysis of the data obtained led us to conclude that all the changes in [Ca2+]i caused by Na+/NMDG replacement are mainly due to a release of endogenous Glu (reversed Glu uptake) and a subsequent Ca2+ influx through NMDA receptor-mediated channels
    corecore