8 research outputs found

    Genetic instability and anti-HPV immune response as drivers of infertility associated with HPV infection

    Get PDF
    Funding Information: RFBR grant 17–54-30002, Ministry of Science and Higher Education of the Russian Federation (Agreement No. 075–15–2019-1660) to Olga Smirnova. Publisher Copyright: © 2021, The Author(s).Human papillomavirus (HPV) is a sexually transmitted infection common among men and women of reproductive age worldwide. HPV viruses are associated with epithelial lesions and cancers. HPV infections have been shown to be significantly associated with many adverse effects in reproductive function. Infection with HPVs, specifically of high-oncogenic risk types (HR HPVs), affects different stages of human reproduction, resulting in a series of adverse outcomes: 1) reduction of male fertility (male infertility), characterized by qualitative and quantitative semen alterations; 2) impairment of couple fertility with increase of blastocyst apoptosis and reduction of endometrial implantation of trophoblastic cells; 3) defects of embryos and fetal development, with increase of spontaneous abortion and spontaneous preterm birth. The actual molecular mechanism(s) by which HPV infection is involved remain unclear. HPV-associated infertility as Janus, has two faces: one reflecting anti-HPV immunity, and the other, direct pathogenic effects of HPVs, specifically, of HR HPVs on the infected/HPV-replicating cells. Adverse effects observed for HR HPVs differ depending on the genotype of infecting virus, reflecting differential response of the host immune system as well as functional differences between HPVs and their individual proteins/antigens, including their ability to induce genetic instability/DNA damage. Review summarizes HPV involvement in all reproductive stages, evaluate the adverse role(s) played by HPVs, and identifies mechanisms of viral pathogenicity, common as well as specific for each stage of the reproduction process.publishersversionPeer reviewe

    HPV during pregnancy

    No full text

    Multiplex PCR assay for the rapid identification of human papillomavirus genotypes 16, 18, 45, 35, 66, 33, 51, 58, and 31 in clinical samples

    No full text
    The causal association between persistent human papillomavirus (HPV) infection and cervical cancer has lead to the development of a variety of molecular assays for HPV detection. The present study focused on the development of a simple, sensitive and cost-effective HPV genotyping method based on multiplex PCR methodology that could be easily performed in small laboratories. Three multiplex PCR assays were developed to identify the HPV genotypes 16, 18, 45, 35, 66, 33, 51, 58, and 31 together with an internal control. The method was established by designing nine type-specific primer sets that target conserved regions of the L1 gene. The assay was applied using HPV-positive cervical specimens, and cloning and sequencing of all of the amplicons that were generated were performed to examine the specificity of the newly designed primers. Moreover, an experimental cutoff value was determined through reconstitution experiments using HPV DNA plasmids. Amplicons of expected size were obtained, while cloning and sequencing of PCR products confirmed the genomic specificity of the amplicons. The sensitivity of this method was determined to be 10 copies of each individual HPV genotype per test. Multiple and single HPV infections were documented in 42.2 % and 57.8 % of cervical specimens, respectively. The most prevalent HPV genotype was HPV16, followed by HPV18, HPV66 and HPV51. The present multiplex PCR assay is a simple method with high specificity and sensitivity that can be applied in clinical or epidemiological analyses for rapid identification of the most clinically important HPV genotypes present in cervical intraepithelial neoplasias
    corecore