7,601 research outputs found

    The role of the motility of Methylobacterium in bacterial interactions in drinking water

    Get PDF
    Bacterial motility is one important factor that affects biofilm formation. In drinking water there are key bacteria in aggregation, whose biology acts to enhance the formation of biofilms. However, it is unclear whether the motility of these key bacteria is an important factor for the interactions between bacteria in drinking water, and, subsequently, in the formation of aggregates, which are precursors to biofilms. Thus, the role of the motility of one of these key bacteria, the Methylobacterium strain DSM 18358, was investigated in the interactions between bacteria in drinking water. The motility of pure Methylobacterium colonies was initially explored; if it was affected by the viscosity of substrate, the temperature, the available energy and the type of substrate. Furthermore, the role of Methylobacterium in the interactions between mixed drinking water bacteria was investigated under the mostly favourable conditions for the motility of Methylobacterium identified before. Overall, the motility of Methylobacterium was found to play a key role in the communication and interactions between bacteria in drinking water. Understanding the role of the motility of key bacteria in drinking water might be useful for the water industry as a potential tool to control the formation of biofilms in drinking water pipes

    Luminosities and mass-loss rates of Local Group AGB stars and Red Supergiants

    Full text link
    We aim to investigate mass loss and luminosity in a large sample of evolved stars in several Local Group galaxies with a variety of metalliticies and star-formation histories: the Small and Large Magellanic Cloud, and the Fornax, Carina, and Sculptor dwarf spheroidal galaxies. Dust radiative transfer models are presented for 225 carbon stars and 171 oxygen-rich evolved stars for which spectra from the Infrared Spectrograph on Spitzer are available. The spectra are complemented with available optical and infrared photometry to construct spectral energy distributions. A minimization procedure was used to determine luminosity and mass-loss rate (MLR). Pulsation periods were derived for a large fraction of the sample based on a re-analysis of existing data. New deep K-band photometry from the VMC survey and multi-epoch data from IRAC and AllWISE/NEOWISE have allowed us to derive pulsation periods longer than 1000 days for some of the most heavily obscured and reddened objects. We derive (dust) MLRs and luminosities for the entire sample. The estimated MLRs can differ significantly from estimates for the same objects in the literature due to differences in adopted optical constants (up to factors of several) and details in the radiative transfer modelling. Updated parameters for the super-AGB candidate MSX SMC 055 (IRAS 00483-7347) are presented. Its current mass is estimated to be 8.5 +- 1.6 \msol, suggesting an initial mass well above 8~\msol. Using synthetic photometry, we present and discuss colour-colour and colour-magnitude diagrams which can be expected from the James Webb Space Telescope.Comment: A&A accepted. The full version (100 pages, 12 MB) with complete tables and all figures of the appendices is available at http://homepage.oma.be/marting/articlesgroen.htm

    Productivity of Florida Springs: Second semi-annual report to the Biology Division, Office of Naval Research progress from February 1, 1953 to June 30, 1953

    Get PDF
    During this second six months emphasis has been laid on developing a complete understanding of the metabolism of the Silver Springs ecosystem as an example of a community apparently in a steady state. Variation in phosphates, uptake of nitrates, and importance of boron have been estimated. Fluctuation of some major elements has been estimated. Examination of stomach contents has permitted trophic classifications of dominant species and the standing crops have been estimated for these species by number and by dry weight. From these a pyramid of mass has been constructed. Special attention has been paid to bacteria using 3 methods for comparison of Silver Springs with lakes and estimation of the standing crop. The oxygen gradient method has been repeated at half hourly intervals. A carbon-dioxide gradient method has also been used to check the oxygen and to obtain a photosynthetic quotient. Black and light Bell jar experiments have been initiated to obtain checks on the other production measurement and to obtain a community respiration rate. An approximate balance has resulted from estimates of production , respiration , and downstream loss. A flow rate diagram has been constructed to clarify definitions of efficiency and their relationship to a steady state system. Mr. Sloan has statistically verified the increase of insect number and variety away from the boils and demonstrated the reliability of quantitative dipping for aquatic insects. Plans for the third half year include detained and comparative study of the dominant algae and further estimates of rates of growth of all community components. (29pp.

    A keystone Methylobacterium strain in biofilm formation in drinking water

    Get PDF
    The structure of biofilms in drinking water systems is influenced by the interplay between biological and physical processes. Bacterial aggregates in bulk fluid are important in seeding biofilm formation on surfaces. In simple pure and co-cultures, certain bacteria, including Methylobacterium, are implicated in the formation of aggregates. However, it is unclear whether they help to form aggregates in complex mixed bacterial communities. Furthermore, different flow regimes could affect the formation and destination of aggregates. In this study, real drinking water mixed microbial communities were inoculated with the Methylobacterium strain DSM 18358. The propensity of Methylobacterium to promote aggregation was monitored under both stagnant and flow conditions. Under stagnant conditions, Methylobacterium enhanced bacterial aggregation even when it was inoculated in drinking water at 1% relative abundance. Laminar and turbulent flows were developed in a rotating annular reactor. Methylobacterium was found to promote a higher degree of aggregation in turbulent than laminar flow. Finally, fluorescence in situ hybridisation images revealed that Methylobacterium aggregates had distinct spatial structures under the different flow conditions. Overall, Methylobacterium was found to be a key strain in the formation of aggregates in bulk water and subsequently in the formation of biofilms on surfaces
    • …
    corecore