864 research outputs found

    Secure Grouping Protocol Using a Deck of Cards

    Full text link
    We consider a problem, which we call secure grouping, of dividing a number of parties into some subsets (groups) in the following manner: Each party has to know the other members of his/her group, while he/she may not know anything about how the remaining parties are divided (except for certain public predetermined constraints, such as the number of parties in each group). In this paper, we construct an information-theoretically secure protocol using a deck of physical cards to solve the problem, which is jointly executable by the parties themselves without a trusted third party. Despite the non-triviality and the potential usefulness of the secure grouping, our proposed protocol is fairly simple to describe and execute. Our protocol is based on algebraic properties of conjugate permutations. A key ingredient of our protocol is our new techniques to apply multiplication and inverse operations to hidden permutations (i.e., those encoded by using face-down cards), which would be of independent interest and would have various potential applications

    Two‐Dimensional Local Modeling of Thermospheric Heating and Neutral Mass Density Enhancement Driven by AlfvĂ©n Waves

    Get PDF
    In the cusp region, a significantly enhanced thermospheric mass density is commonly observed around 400 km altitude. Despite a number of studies, the enhancement mechanism has not been fully characterized. In order to determine how the Joule heating and resultant mass density enhancements are generated in the region of the ionosphere during a few hours after the AlfvĂ©n resonator modes are set up, we have developed a new efficient method to calculate AlfvĂ©n waves. In this method, the Fourier transform was used, and AlfvĂ©n waves were solved as frequency-domain boundary value problems. We employed a two-dimensional local model and performed five modeling runs. The result from the modeling runs shows that the AlfvĂ©n resonator modes generate significant neutral upwelling at ∌300 km altitude, which creates a “cell” of the neutral mass density enhancement at altitudes centered between 350 and 400 km. This cell becomes evident roughly 1 hr after the AlfvĂ©n resonator modes are set up, and this region continues to exist stably for 2 more hours. A fractional mass density enhancement at 400 km altitude 3 hr after the AlfvĂ©n resonator modes having an AlfvĂ©nic field-aligned current of 20 ÎŒAm⁻ÂČ at the top boundary are set up reaches ∌30%, which is consistent with the result obtained from satellite observations. In terms of the Poynting flux, this corresponds to ∌20 mWm⁻ÂČ, which is also consistent with previous satellite observations

    Extending the linearity range of eddy-current displacement sensor with magnetoplated wire

    Get PDF
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.ArticleIEEE TRANSACTIONS ON MAGNETICS. 43(2): 543-548 (2007)journal articl

    NMR evidence for very slow carrier density fluctuations in the organic metal (TMTSF)2_2ClO4_4

    Full text link
    We have investigated the origin of the large increase in spin-echo decay rates for the 77^{77}Se nuclear spins at temperatures near to T=30KT=30K in the organic superconductor (TMTSF)2_2ClO4_4. The measured angular dependence of T2−1T_2^{-1} demonstrates that the source of the spin-echo decays lies with carrier density fluctuations rather than fluctuations in TMTSF molecular orientation. The very long time scales are directly associated with the dynamics of the anion ordering occurring at T=25KT=25K, and the inhomogeneously broadened spectra at lower temperatures result from finite domain sizes. Our results are similar to observations of line-broadening effects associated with charge-ordering transitions in quasi-two dimensional organic conductors.Comment: 5 pages, 4 figure

    Reduction of eddy current loss in magnetoplated wire

    Get PDF
    ArticleCOMPEL-THE INTERNATIONAL JOURNAL FOR COMPUTATION AND MATHEMATICS IN ELECTRICAL AND ELECTRONIC ENGINEERING. 28(1):57-66 (2009)journal articl

    Reduction of proximity effect in coil using magnetoplated wire

    Get PDF
    This material is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are retained by authors or by other copyright holders. All persons copying this information are expected to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works may not be reposted without the explicit permission of the copyright holder.ArticleIEEE TRANSACTIONS ON MAGNETICS. 43(6): 2654-2656 (2007)journal articl

    CAP-VMs: Capability-based isolation and sharing in the cloud

    Get PDF
    Cloud stacks must isolate application components, while permitting efficient data sharing between components deployed on the same physical host. Traditionally, the MMU enforces isolation and permits sharing at page granularity. MMU approaches, however, lead to cloud stacks with large TCBs in kernel space, and page granularity requires inefficient OS interfaces for data sharing. Forthcoming CPUs with hardware support for memory capabilities offer new opportunities to implement isolation and sharing at a finer granularity. We describe cVMs, a new VM-like abstraction that uses memory capabilities to isolate application components while supporting efficient data sharing, all without mandating application code to be capability-aware. cVMs share a single virtual address space safely, each having only capabilities to access its own memory. A cVM may include a library OS, thus minimizing its dependency on the cloud environment. cVMs efficiently exchange data through two capability-based primitives assisted by a small trusted monitor: (i) an asynchronous read/write interface to buffers shared between cVMs; and (ii) a call interface to transfer control between cVMs. Using these two primitives, we build more expressive mechanisms for efficient cross-cVM communication. Our prototype implementation using CHERI RISC-V capabilities shows that cVMs isolate services (Redis and Python) with low overhead while improving data sharing

    ORC: Increasing cloud memory density via object reuse with capabilities

    Get PDF
    Cloud environments host many tenants, and typically there is substantial overlap between the application binaries and libraries executed by tenants. Thus, memory de-duplication can increase memory density by allocating memory for shared binaries only once. Existing de-duplication approaches, however, either rely on a shared OS to de-deduplicate binary objects, which provides unacceptably weak isolation; or exploit hypervisor-based de-duplication at the level of memory pages, which is blind to the semantics of the objects to be shared. We describe Object Reuse with Capabilities (ORC), which supports the fine-grained sharing of binary objects between tenants, while isolating tenants strongly through a small trusted computing base (TCB). ORC uses hardware sup- port for memory capabilities to isolate tenants, which permits shared objects to be accessible to multiple tenants safely. Since ORC shares binary objects within a single address space through capabilities, it uses a new relocation type to create per-tenant state when loading shared objects. ORC supports the loading of objects by an untrusted guest, outside of its TCB, only verifying the safety of the loaded data. Our experiments show that ORC achieves a higher memory density with a lower overhead than hypervisor-based de-deduplication
    • 

    corecore