4,752 research outputs found

    Doping-dependence of nodal quasiparticle properties in high-TcT_{\rm c} cuprates studied by laser-excited angle-resolved photoemission spectroscopy

    Full text link
    We investigate the doping dependent low energy, low temperature (TT = 5 K) properties of nodal quasiparticles in the d-wave superconductor Bi2.1_{2.1}Sr1.9_{1.9}CaCu2_2O8+δ_{8+\delta} (Bi2212). By utilizing ultrahigh resolution laser-excited angle-resolved photoemission spectroscopy, we obtain precise band dispersions near EFE_{F}, mean free paths and scattering rates (Γ\Gamma) of quasiparticles. For optimally and overdoped, we obtain very sharp quasiparticle peaks of 8 meV and 6 meV full-width at half-maximum, respectively, in accord with terahertz conductivity. For all doping levels, we find the energy-dependence of Γω\Gamma \sim |\omega |, while Γ\Gamma(ω=0\omega =0) shows a monotonic increase from overdoping to underdoping. The doping dependence suggests the role of electronic inhomogeneity on the nodal quasiparticle scattering at low temperature (5 K \lsim 0.07T_{\rm c}), pronounced in the underdoped region

    Orbital-dependent modifications of electronic structure across magneto-structural transition in BaFe2As2

    Full text link
    Laser angle-resolved photoemission spectroscopy (ARPES) is employed to investigate the temperature (T) dependence of the electronic structure in BaFe2As2 across the magneto-structural transition at TN ~ 140 K. A drastic transformation in Fermi surface (FS) shape across TN is observed, as expected by first-principles band calculations. Polarization-dependent ARPES and band calculations consistently indicate that the observed FSs at kz ~ pi in the low-T antiferromagnetic (AF) state are dominated by the Fe3dzx orbital, leading to the two-fold electronic structure. These results indicate that magneto-structural transition in BaFe2As2 accompanies orbital-dependent modifications in the electronic structure.Comment: 13 pages, 4 figures. accepted by Physical Review Letter

    Ultrafast nematic-orbital excitation in FeSe

    Get PDF
    The electronic nematic phase is an unconventional state of matter that spontaneously breaks the rotational symmetry of electrons. In iron-pnictides/chalcogenides and cuprates, the nematic ordering and fluctuations have been suggested to have as-yet-unconfirmed roles in superconductivity. However, most studies have been conducted in thermal equilibrium, where the dynamical property and excitation can be masked by the coupling with the lattice. Here we use femtosecond optical pulse to perturb the electronic nematic order in FeSe. Through time-, energy-, momentum- and orbital-resolved photo-emission spectroscopy, we detect the ultrafast dynamics of electronic nematicity. In the strong-excitation regime, through the observation of Fermi surface anisotropy, we find a quick disappearance of the nematicity followed by a heavily-damped oscillation. This short-life nematicity oscillation is seemingly related to the imbalance of Fe 3dxz and dyz orbitals. These phenomena show critical behavior as a function of pump fluence. Our real-time observations reveal the nature of the electronic nematic excitation instantly decoupled from the underlying lattice

    A Possible Phase Transition in beta-pyrochlore Compounds

    Full text link
    We investigate a lattice of interacting anharmonic oscillators by using a mean field theory and exact diagonalization. We construct an effective five-state hopping model with intersite repulsions as a model for beta-pyrochlore AOs_2O_6(A=K, Rb or Cs). We obtain the first order phase transition line from large to small oscillation amplitude phases as temperature decreases. We also discuss the possibility of a phase with local electric polarizations. Our theory can explain the origin of the mysterious first order transition in KOs_2O_6.Comment: 4 pages, 4 figures, submitted to J. Phys. Soc. Jp

    Strongly spin-orbit coupled two-dimensional electron gas emerging near the surface of polar semiconductors

    Full text link
    We investigate the two-dimensional (2D) highly spin-polarized electron accumulation layers commonly appearing near the surface of n-type polar semiconductors BiTeX (X = I, Br, and Cl) by angular-resolved photoemission spectroscopy. Due to the polarity and the strong spin-orbit interaction built in the bulk atomic configurations, the quantized conduction-band subbands show giant Rashba-type spin-splitting. The characteristic 2D confinement effect is clearly observed also in the valence-bands down to the binding energy of 4 eV. The X-dependent Rashba spin-orbit coupling is directly estimated from the observed spin-split subbands, which roughly scales with the inverse of the band-gap size in BiTeX.Comment: 15 pages 4 figure

    Origin of the Weak Pseudo-gap Behaviors in Na_{0.35}CoO_2: Absence of Small Hole Pockets

    Full text link
    We analyze the ``normal electronic states'' of Na_{0.35}CoO_2 based on the effective d-p model with full d-orbital freedom using the fluctuation-exchange (FLEX) approximation. They sensitively depend on the topology of the Fermi surfaces, which changes as the crystalline electric splitting (CES) due to the trigonal deformation. We succeed in reproducing the weak pseudo-gap behaviors in the density of states (DOS) and in the uniform magnetic susceptibility below 300K, assuming that six small hole-pockets predicted by LDA band calculations are absent. When they exist, on the contrary, then ``anti-pseudo-gap behaviors'' should inevitably appear. Thus, the present study strongly supports the absence of the small hole-pockets in Na_{0.35}CoO_2, as reported by recent ARPES measurements. A large Fermi surface around the \Gamma-point would account for the superconductivity in water-intercalated samples.Comment: 5pages, to appear in J. Phys. Soc. Jpn. Vol.74 (2005) No.

    Magnetism and Charge Dynamics in Iron Pnictides

    Full text link
    In a wide variety of materials, such as copper oxides, heavy fermions, organic salts, and the recently discovered iron pnictides, superconductivity is found in close proximity to a magnetically ordered state. The character of the proximate magnetic phase is thus believed to be crucial for understanding the differences between the various families of unconventional superconductors and the mechanism of superconductivity. Unlike the AFM order in cuprates, the nature of the magnetism and of the underlying electronic state in the iron pnictide superconductors is not well understood. Neither density functional theory nor models based on atomic physics and superexchange, account for the small size of the magnetic moment. Many low energy probes such as transport, STM and ARPES measured strong anisotropy of the electronic states akin to the nematic order in a liquid crystal, but there is no consensus on its physical origin, and a three dimensional picture of electronic states and its relations to the optical conductivity in the magnetic state is lacking. Using a first principles approach, we obtained the experimentally observed magnetic moment, optical conductivity, and the anisotropy of the electronic states. The theory connects ARPES, which measures one particle electronic states, optical spectroscopy, probing the particle hole excitations of the solid and neutron scattering which measures the magnetic moment. We predict a manifestation of the anisotropy in the optical conductivity, and we show that the magnetic phase arises from the paramagnetic phase by a large gain of the Hund's rule coupling energy and a smaller loss of kinetic energy, indicating that iron pnictides represent a new class of compounds where the nature of magnetism is intermediate between the spin density wave of almost independent particles, and the antiferromagnetic state of local moments.Comment: 4+ pages with additional one-page supplementary materia

    Bulk and surface-sensitive high-resolution photoemission study of Mott-Hubbard systems SrVO3_3 and CaVO3_3

    Get PDF
    We study the electronic structure of Mott-Hubbard systems SrVO3_{3} and CaVO3_3 with bulk and surface-sensitive high-resolution photoemission spectroscopy (PES), using a VUV laser, synchrotron radiation and a discharge lamp (hνh\nu = 7 - 21 eV). A systematic suppression of the density of states (DOS) within \sim 0.2 eV of the Fermi level (EFE_F) is found on decreasing photon energy i.e. on increasing bulk sensitivity. The coherent band in SrVO3_{3} and CaVO3_3 is shown to consist of surface and bulk derived features, separated in energy. The stronger distortion on surface of CaVO3_{3} compared to SrVO3_{3} leads to higher surface metallicity in the coherent DOS at EFE_F, consistent with recent theory.Comment: 4 pages 5 figures (including 2 auxiliary figures); A complete analysis of the spectra based on the surface and bulk analysis shows in auxiliary figures Fig. A1 and A
    corecore