50 research outputs found

    The dead ringer/retained transcriptional regulatory gene is required for positioning of the longitudinal glia in the Drosophila embryonic CNS

    Get PDF
    The Drosophila dead ringer (dri, also known as retained, retn) gene encodes a nuclear protein with a conserved DNA-binding domain termed the ARID (AT-rich interaction domain). We show here that dri is expressed in a subset of longitudinal glia in the Drosophila embryonic central nervous system and that dri forms part of the transcriptional regulatory cascade required for normal development of these cells. Analysis of mutant embryos revealed a role for dri in formation of the normal embryonic CNS. Longitudinal glia arise normally in dri mutant embryos, but they fail to migrate to their final destinations. Disruption of the spatial organization of the dri-expressing longitudinal glia accounts for the mild defects in axon fasciculation observed in the mutant embryos. Consistent with the late phenotypes observed, expression of the glial cells missing (gcm) and reversed polarity (repo) genes was found to be normal in dri mutant embryos. However, from stage 15 of embryogenesis, expression of locomotion defects (loco) and prospero (pros) was found to be missing in a subset of LG. This suggests that loco and pros are targets of DRI transcriptional activation in some LG. We conclude that dri is an important regulator of the late development of longitudinal glia

    The Drosophila retained/dead ringer gene and ARID gene family function during development

    Get PDF
    © UBC PressThe recently discovered ARID family of proteins interact with DNA through a phylogenetically conserved sequence termed the A/T Interaction Domain (ARID). The retained/dead ringer (retn/dri) gene of Drosophila melanogaster is a founding member of the ARID gene family, and of the eARID subfamily. This subfamily exhibits an extended region of sequence similarity beyond the core ARID motif and a separate conserved domain termed the REKLES domain. retn/dri is involved in a range of developmental processes, including axis patterning and muscle development. The retn/dri ARID motif has been shown by in vitro studies to exhibit sequence-specific DNA binding activity. Here we demonstrate that the ARID domain is essential for the in vivo function of retn/dri during embryonic development by showing that a mutant form of RETN/DRI, deleted for part of the ARID domain and unable to bind DNA in vitro, cannot rescue the retn/dri mutant phenotype. In the presence of wild-type RETN/DRI this construct acts as a dominant negative, providing additional support for the proposal that RETN/DRI acts in a multiprotein complex. In contrast, we are yet to find an in vivo role for the REKLES domain, despite its clear evolutionary conservation. Finally, we have used germline clone analysis to reveal a requirement for retn/dri in the Drosophila preblastoderm syncytial mitoses.Tetyana Shandala, R. Daniel Kortschak and Robert Sain

    The Drosophila dead ringer gene is required for early embryonic patterning through regulation of argos and buttonhead expression

    Get PDF
    Copyright © 1999 by Company of BiologistsThe dead ringer (dri) gene of Drosophila melanogaster is a member of the recently discovered ARID-box family of eukaryotic genes that encode proteins with a conserved DNA binding domain. dri itself is highly conserved, with specific orthologs in the human, mouse, zebrafish and C. elegans genomes. We have generated dri mutant alleles to show that dri is essential for anterior-posterior patterning and for muscle development in the embryo. Consistent with the mutant phenotype and the sequence-specific DNA-binding properties of its product, dri was found to be essential for the normal early embryonic expression pattern of several key regulatory genes. In dri mutant embryos, expression of argos in the terminal domains was severely reduced, accounting for the dri mutant head phenotype. Conversely, buttonhead expression was found to be deregulated in the trunk region, accounting for the appearance of ectopic cephalic furrows. Curiously, dri was found also to be required for maintenance of expression of the ventrolateral region of even-skipped stripe four. This study establishes dri as an essential co-factor in the regulated expression of specific patterning genes during early embryogenesis

    Citron kinase is an essential effector of the Pbl-activated Rho signalling pathway in Drosophila melanogaster.

    Get PDF
    Copyright © 2004 The Company of Biologists LtdPebble (Pbl)-activated RhoA signalling is essential for cytokinesis in Drosophila melanogaster. Here we report that the Drosophila citron gene encodes an essential effector kinase of Pbl-RhoA signalling in vivo. Drosophila citron is expressed in proliferating tissues but is downregulated in differentiating tissues. We find that Citron can bind RhoA and that localisation of Citron to the contractile ring is dependent on the cytokinesis-specific Pbl-RhoA signalling. Phenotypic analysis of mutants showed that citron is required for cytokinesis in every tissue examined, with mutant cells exhibiting multinucleate and hyperploid phenotypes. Strong genetic interactions were observed between citron and pbl alleles and constructs. Vertebrate studies implicate at least two Rho effector kinases, Citron and Rok, in cytokinesis. By contrast, we failed to find evidence for a role for the Drosophila ortholog of Rok in cell division. We conclude that Citron plays an essential, non-redundant role in the Rho signalling pathway during Drosophila cytokinesis.Tetyana Shandala, Stephen L. Gregory, Hazel E. Dalton, Masha Smallhorn and Robert Sain

    Effects of resveratrol supplementation on methotrexate chemotherapy-induced bone loss

    Get PDF
    Intensive cancer chemotherapy is known to cause bone defects, which currently lack treatments. This study investigated the effects of polyphenol resveratrol (RES) in preventing bone defects in rats caused by methotrexate (MTX), a commonly used antimetabolite in childhood oncology. Young rats received five daily MTX injections at 0.75 mg/kg/day. RES was orally gavaged daily for seven days prior to, and during, five-day MTX administration. MTX reduced growth plate thickness, primary spongiosa height, trabecular bone volume, increased marrow adipocyte density, and increased mRNA expression of the osteogenic, adipogenic, and osteoclastogenic factors in the tibial bone. RES at 10 mg/kg was found not to affect bone health in normal rats, but to aggravate the bone damage in MTX-treated rats. However, RES supplementation at 1 mg/kg preserved the growth plate, primary spongiosa, bone volume, and lowered the adipocyte density. It maintained expression of genes involved in osteogenesis and decreased expression of adipogenic and osteoclastogenic factors. RES suppressed osteoclast formation ex vivo of bone marrow cells from the treated rats. These data suggest that MTX can enhance osteoclast and adipocyte formation and cause bone loss, and that RES supplementation at 1 mg/kg may potentially prevent these bone defects.Alice M.C. Lee, Tetyana Shandala, Pei Pei Soo, Yu-Wen Su, Tristan J. King, Ke-Ming Chen, Peter R. Howe and Cory J. Xia

    Atg9 is required for intraluminal vesicles in amphisomes and autolysosomes

    Get PDF
    Autophagy is an intracellular recycling and degradation process, which is important for energy metabolism, lipid metabolism, physiological stress response and organism development. During Drosophila development, autophagy is up-regulated in fat body and midgut cells, to control metabolic function and to enable tissue remodelling. Atg9 is the only transmembrane protein involved in the core autophagy machinery and is thought to have a role in autophagosome formation. During Drosophila development, Atg9 co-located with Atg8 autophagosomes, Rab11 endosomes and Lamp1 endosomes-lysosomes. RNAi silencing of Atg9 reduced both the number and the size of autophagosomes during development and caused morphological changes to amphisomes/autolysosomes. In control cells there was compartmentalised acidification corresponding to intraluminal Rab11/Lamp-1 vesicles, but in Atg9 depleted cells there were no intraluminal vesicles and the acidification was not compartmentalised. We concluded that Atg9 is required to form intraluminal vesicles and for localised acidification within amphisomes/autolysosomes, and consequently when depleted, reduced the capacity to degrade and remodel gut tissue during development.C. A. Bader, T. Shandala, Y. S. Ng, I. R. D. Johnson, D. A. Brook

    Effects of maternal hypoxia during pregnancy on bone development in offspring: a guinea pig model

    Get PDF
    Low birth weight is associated with reduced bone mass and density in adult life. However, effects of maternal hypoxia (MH) on offspring bone development are not known. Objective. The current study investigated the effects of fetal growth restriction induced by MH during the last half of gestation on bone structure and volume in the offspring of the fetus near term and the pup in adolescence. Methods. During 35-62-day gestation (term, 69d), guinea pigs were housed in room air (21% O2; control) or 12% O2 (MH). Offspring femur and tibia were collected at 62d gestation and 120d after birth. Results. MH decreased fetal birth weight but did not affect osteogenic potential pools in the fetal bone marrow. Histological analysis showed no effects of MH on tibial growth plate thickness in either fetal or postnatal offspring, although there was increased VEGF mRNA expression in the growth plate of postnatal offspring. MH did not change primary spongiosa height but lowered collagen-1 mRNA expression in postnatal offspring. There was increased mRNA expression of adipogenesis-related gene (FABP4) in bone from the MH postnatal offspring. Conclusion. MH during late gestation did not change the pool of osteogenic cells before birth or growth plate heights before and after birth. However, MH reduced expression of bone formation marker (collagen-1) and increased expression of fat formation marker (FABP4) in postnatal offspring bone.Alice M. C. Lee, Janna L. Morrison, Kimberley J. Botting, Tetyana Shandala, and Cory J. Xia

    CDKI-73 is a novel pharmacological inhibitor of Rab11 cargo delivery and innate immune secretion

    Get PDF
    Innate immunity is critical for host defence against pathogen and environmental challenge and this involves the production and secretion of immune mediators, such as antimicrobial peptides and pro-inflammatory cytokines. However, when dysregulated, innate immunity can contribute to multifactorial diseases, including inflammatory rheumatic disorders, type 2 diabetes, cancer, neurodegenerative and cardiovascular diseases and even septic shock. During an innate immune response, antimicrobial peptides and cytokines are trafficked via Rab11 multivesicular endosomes, and then sorted into Rab11 vesicles for traffic to the plasma membrane and secretion. In this study, a cyclin-dependent kinase inhibitor CDKI-73 was used to determine its effect on the innate immune response, based on previously identified targets for this compound. Our results showed that CDKI-73 inhibited the delivery of Rab11 vesicles to the plasma membrane, resulting in the accumulation of large multivesicular Rab11 endosomes near the cell periphery. In addition to the effect on endosome delivery, CDKI-73 down-regulated the amount of innate immune cargo, including the antimicrobial peptide Drosomycin and pro-inflammatory cytokines interleukin-6 (IL-6) and tumour necrosis factor alpha (TNFα). We concluded that CDKI-73 has the potential to regulate the delivery and secretion of certain innate immune cargo, which could be used to control inflammation.Alexandra Sorvina, Tetyana Shandala, Shudong Wang, David J. Sharkey, Emma Parkinson-Lawrence, Stavros Selemidis and Douglas A. Brook
    corecore