1,889 research outputs found

    High multipole transitions in NIXS: valence and hybridization in 4f systems

    Full text link
    Momentum-transfer (q) dependent non-resonant inelastic x-ray scattering measurements were made at the N4,5 edges for several rare earth compounds. With increasing q, giant dipole resonances diminish, to be replaced by strong multiplet lines at lower energy transfer. These multiplets result from two different orders of multipole scattering and are distinct for systems with simple 4f^0 and 4f^1 initial states. A many-body theoretical treatment of the multiplets agrees well with the experimental data on ionic La and Ce phosphate reference compounds. Comparing measurements on CeO2 and CeRh3 to the theory and the phosphates indicates sensitivity to hybridization as observed by a broadening of 4f^0-related multiplet features. We expect such strong, nondipole features to be generic for NIXS from f-electron systems

    From Batch to Transductive Online Learning

    Get PDF
    It is well-known that everything that is learnable in the difficult online setting, where an arbitrary sequences of examples must be labeled one at a time, is also learnable in the batch setting, where examples are drawn independently from a distribution. We show a result in the opposite direction. We give an efficient conversion algorithm from batch to online that is transductive: it uses future unlabeled data. This demonstrates the equivalence between what is properly and efficiently learnable in a batch model and a transductive online model

    Regulation of angiogenesis and invasion by human Pituitary tumor transforming gene (PTTG) through increased expression and secretion of matrix metalloproteinase-2 (MMP-2)

    Get PDF
    BACKGROUND: Pituitary tumor transforming gene (PTTG) is a novel oncogene that is expressed at higher level in most of the tumors analyzed to date compared to normal tissues. Existence of a relationship between PTTG levels and tumor angiogenesis and metastasis has been reported. However, the mechanisms by which PTTG achieve these functions remain unknown. In the present study, we investigated the effect of overexpression of PTTG on secretion and expression of metastasis-related metalloproteinase-2 (MMP-2) in HEK293 cells, cell migration, invasion and tubule formation. RESULTS: Transient or stable transfection of HEK293 cells with PTTG cDNA showed a significant increase in secretion and expression of MMP-2 measured by zymography, reverse transcriptase (RT/PCR), ELISA, and MMP-2 gene promoter activity. Furthermore, in our studies, we showed that tumor developed in nude mice on injection of HEK293 cells that constitutively express PTTG expressed high levels of both MMP-2 mRNA and protein, and MMP-2 activity. Conditioned medium collected from the HEK293 cells overexpressing PTTG showed a significant increase in cell migration, invasion and tubule formation of human umbilical vein endothelial cells (HUVEC). Pretreatment of conditioned medium with MMP-2-specific antibody significantly decreased these effects, suggesting that PTTG may contribute to tumor angiogenesis and metastasis via activation of proteolysis and increase in invasion through modulation of MMP-2 activity and expression. CONCLUSION: Our results provide novel information that PTTG contributes to cell migration, invasion and angiogenesis by induction of MMP-2 secretion and expression. Furthermore, we showed that tumors developed in nude mice on injection of HEK293 cells that constitutively express PTTG induce expression of MMP-2 and significantly increase its functional activity, suggesting a relationship between PTTG levels and MMP-2 which may play a critical role in regulation of tumor growth, angiogenesis and metastasis. Blocking of function of PTTG or down regulation of its expression in tumors may result in suppression of tumor growth and metastasis, through the down regulation of MMP-2 expression and activity. To our knowledge, this study is the first study demonstrating the modulation of MMP-2 expression and biological activity by PTTG

    High temperature thermal conductivity of 2-leg spin-1/2 ladders

    Full text link
    Based on numerical simulations, a study of the high temperature, finite frequency, thermal conductivity κ(ω)\kappa(\omega) of spin-1/2 ladders is presented. The exact diagonalization and a novel Lanczos technique are employed.The conductivity spectra, analyzed as a function of rung coupling, point to a non-diverging dc−dc-limit but to an unconventional low frequency behavior. The results are discussed with perspective recent experiments indicating a significant magnetic contribution to the energy transport in quasi-one dimensional compounds.Comment: 4 pages, 4 figure

    Optical RKKY Interaction between Charged Semiconductor Quantum Dots

    Full text link
    We show how a spin interaction between electrons localized in neighboring quantum dots can be induced and controlled optically. The coupling is generated via virtual excitation of delocalized excitons and provides an efficient coherent control of the spins. This quantum manipulation can be realized in the adiabatic limit and is robust against decoherence by spontaneous emission. Applications to the realization of quantum gates, scalable quantum computers, and to the control of magnetization in an array of charged dots are proposed.Comment: 4 pages, 2 figure

    Photoluminescence and spectral switching of single CdSe/ZnS colloidal nanocrystals in poly(methyl methacrylate)

    Full text link
    Emission from single CdSe nanocrystals in PMMA was investigated. A fraction of the nanocrystals exhibiting switching between two energy states, which have similar total intensities, but distinctly different spectra were observed. We found that the spectral shift characteristic frequency increases with the pump power. By using the dynamic shift in the spectral position of emission peaks, we were able to correlate peaks from the same nanocrystal. The measured correlation is consistent with assignment of low energy lines to phonon replicas.Comment: 5 pages, 4 figure

    Ectopic expression of PTTG1/securin promotes tumorigenesis in human embryonic kidney cells

    Get PDF
    BACKGROUND: Pituitary tumor transforming gene1 (PTTG1) is a novel oncogene that is expressed in most tumors. It encodes a protein that is primarily involved in the regulation of sister chromatid separation during cell division. The oncogenic potential of PTTG1 has been well characterized in the mouse, particularly mouse fibroblast (NIH3T3) cells, in which it induces cell proliferation, promotes tumor formation and angiogenesis. Human tumorigenesis is a complex and a multistep process often requiring concordant expression of a number of genes. Also due to differences between rodent and human cell biology it is difficult to extrapolate results from mouse models to humans. To determine if PTTG1 functions similarly as an oncogene in humans, we have characterized its effects on human embryonic kidney (HEK293) cells. RESULTS: We report that introduction of human PTTG1 into HEK293 cells through transfection with PTTG1 cDNA resulted in increased cell proliferation, anchorage-independent growth in soft agar, and formation of tumors after subcutaneous injection of nu/nu mice. Pathologic analysis revealed that these tumors were poorly differentiated. Both analysis of HEK293 cells transiently transfected with PTTG1 cDNA and analysis of tumors developed on injection of HEK293 cells that had been stably transfected with PTTG1 cDNA indicated significantly higher levels of secretion and expression of bFGF, VEGF and IL-8 compared to HEK293 cells transfected with pcDNA3.1 vector or uninvolved tissues collected from the mice. Mutation of the proline-rich motifs at the C-terminal of PTTG1 abolished its oncogenic properties. Mice injected with this mutated PTTG1 either did not form tumors or formed very small tumors. Taken together our results suggest that PTTG1 is a human oncogene that possesses the ability to promote tumorigenesis in human cells at least in part through the regulation of expression or secretion of bFGF, VEGF and IL-8. CONCLUSIONS: Our results demonstrate that PTTG1 is a potent human oncogene and has the ability to induce cellular transformation of human cells. Overexpression of PTTG1 in HEK293 cells leads to an increase in the secretion and expression of bFGF, VEGF and IL-8. Mutation of C-terminal proline-rich motifs abrogates the oncogenic function of PTTG1. To our knowledge, this is the first study demonstrating the importance of PTTG1 in human tumorigenesis
    • …
    corecore