435 research outputs found

    Doping evolution of the electronic specific heat coefficient in slightly-doped La2-xSrxCuO4 single crystals

    Full text link
    Detailed doping dependence of the electronic specific heat coefficient gamma is studied for La2-xSrxCuO4 (LSCO) single crystals in the slightly-doped regime. We find that gamma systematically increases with doping, and furthermore, even for the samples in the antiferromagnetic (AF) regime, gamma already acquires finite value and grows with x. This suggests that finite electronic density of states (DOS) is created in the AF regime where the transport shows strong localization at low temperatures, and this means the system is not a real insulator with a clear gap even though it still keeps long range AF order.Comment: 4 pages, 4 figures, accepted for publication in Journal of Physics: Conference Series (LT25 proceeding

    Thermal Conductivity of Pr_{1.3-x}La_{0.7}Ce_xCuO_4 Single Crystals and Signatures of Stripes in an Electron-Doped Cuprate

    Full text link
    It was recently demonstrated that the anisotropic phonon heat transport behavior is a good probe of the stripe formation in La_{2-x}Sr_xCuO_4 (LSCO) [X. F. Sun {\it et al.}, Phys. Rev. B {\bf 67}, 104503 (2003)]. Using this probe, we examined an electron-doped cuprate Pr_{1.3-x}La_{0.7}Ce_xCuO_4 (PLCCO) and found that essentially the same features as those in LSCO are observed. Moreover, the in-plane resistivity \rho_{ab} of lightly-doped PLCCO shows metallic behavior (d\rho_{ab}/dT > 0) in the N\'eel ordered state with a mobility comparable to that in LSCO. It is discussed that these peculiar properties in common with LSCO signify the existence of stripes in electron-doped cuprates.Comment: 4 pages, 4 figures, revised version accepted for publication in Phys. Rev. Let

    Doping dependence of charge-transfer excitations in La_{2-x}Sr_xCuO_4

    Full text link
    We report a resonant inelastic x-ray scattering (RIXS) study of the doping dependence of charge-transfer excitations in La2−xSrxCuO4\rm La_{2-x}Sr_xCuO_4. The mome ntum dependence of these charge excitations are studied over the whole Brillouin zone in underdoped (x=0.05) and optimally doped (x=0.17) samples, and compared with that of the undoped (x=0) sample. We observe a large change in the RIXS spectra between the x=0 and x=0.17 sample, while the RIXS spectra of the x=0.05 sample are similar to that of the x=0 sample. The most prominent effect of doped-holes on the charge excitation spectra is the appearance of a continuum of intensity, which exhibits a strong momentum-dependence below 2 eV. For the x=0.17 sample, some of the spectral weight from the lowest-lying charge-transfer excitation of the undoped compound is transferred to the continuum intensity below the gap, in agreement with earlier optical studies. However, the higher energy charge-transfer excitation carries significant spectral weight even for the x=0.17 sample. The doping dependence of the dispersion of this charge-transfer excitation is also discussed and compared with recent theoretical calculations.Comment: 7 pages, 6 figures, to appear in Phys. Rev.

    Large magneto-thermal effect and the spin-phonon coupling in a parent insulating cuprate Pr_{1.3}La_{0.7}CuO_4

    Full text link
    The magnetic-field (H) dependence of the thermal conductivity \kappa of Pr_{1.3}La_{0.7}CuO_4 is found to show a pronounced minimum for in-plane fields at low temperature, which is best attributed to the scattering of phonons by free spins that are seen by a Schottky-type specific heat and a Curie-Weiss susceptibility. Besides pointing to a strong spin-phonon coupling in cuprates, the present result demonstrates that the H-dependence of the phonon heat transport should not be naively neglected when discussing the \kappa(H) behavior of cuprates, since the Schottky anomaly is ubiquitously found in cuprates at any doping.Comment: 6 pages, 4 figures, accepted for publication in Phys. Rev.

    "Spin-Flop" Transition and Anisotropic Magnetoresistance in Pr_{1.3-x}La_{0.7}Ce_{x}CuO_{4}: Unexpectedly Strong Spin-Charge Coupling in Electron-Doped Cuprates

    Full text link
    We use transport and neutron-scattering measurements to show that a magnetic-field-induced transition from noncollinear to collinear spin arrangement in adjacent CuO_{2} planes of lightly electron-doped Pr_{1.3-x}La_{0.7}Ce_{x}CuO_{4} (x=0.01) crystals affects significantly both the in-plane and out-of-plane resistivity. In the high-field collinear state, the magnetoresistance (MR) does not saturate, but exhibits an intriguing four-fold-symmetric angular dependence, oscillating from being positive at B//[100] to being negative at B//[110]. The observed MR of more than 30% at low temperatures induced by a modest modification of the spin structure indicates an unexpectedly strong spin-charge coupling in electron-doped cuprates.Comment: 4 pages, 5 figures, accepted for publication in Phys. Rev. Let

    Microscopic analysis of the chemical reaction between Fe(Te,Se) thin films and underlying CaF2_2

    Full text link
    To understand the chemical reaction at the interface of materials, we performed a transmission electron microscopy (TEM) observation in four types of Fe(Te,Se) superconducting thin films prepared on different types of substrates: CaF2 substrate, CaF2 substrate with a CaF2 buffer layer, CaF2 substrate with a FeSe buffer layer, and a LaAlO3 substrate with a CaF2 buffer layer. Based on the energy-dispersive X-ray spectrometer (EDX) analysis, we found possible interdiffusion between fluorine and selenium that has a strong influence on the superconductivity in Fe(Te,Se) films. The chemical interdiffusion also plays a significant role in the variation of the lattice parameters. The lattice parameters of the Fe(Te,Se) thin films are primarily determined by the chemical substitution of anions, and the lattice mismatch only plays a secondary role.Comment: 30 pages, 9 figur

    Zn-impurity effects on quasi-particle scattering in La2-xSrxCuO4 studied by angle-resolved photoemission spectroscopy

    Full text link
    Angle-resolved photoemission measurements were performed on Zn-doped La2-xSrxCuO4 (LSCO) to investigate the effects of Zn impurities on the low energy electronic structure. The Zn-impurity-induced increase in the quasi-particle (QP) width in momentum distribution curves (MDC) is approximately isotropic on the entire Fermi surface and energy-independent near the Fermi level (EF). The increase in the MDC width is consistent with the increase in the residual resistivity due to the Zn impurities if we assume the carrier number to be 1-x for x=0.17 and the Zn impurity to be a potential scatterer close to the unitarity limit. For x=0.03, the residual resistivity is found to be higher than that expected from the MDC width, and the effects of antifferomagnetic fluctuations induced around the Zn impurities are discussed. The leading edges of the spectra near (pi,0) for x=0.17 are shifted toward higher energies relative to EF with Zn substitution, indicating a reduction of the superconducting gap.Comment: 7 pages, 7 figure
    • …
    corecore