2,411 research outputs found
Flow Smoothing and Denoising: Graph Signal Processing in the Edge-Space
This paper focuses on devising graph signal processing tools for the
treatment of data defined on the edges of a graph. We first show that
conventional tools from graph signal processing may not be suitable for the
analysis of such signals. More specifically, we discuss how the underlying
notion of a `smooth signal' inherited from (the typically considered variants
of) the graph Laplacian are not suitable when dealing with edge signals that
encode a notion of flow. To overcome this limitation we introduce a class of
filters based on the Edge-Laplacian, a special case of the Hodge-Laplacian for
simplicial complexes of order one. We demonstrate how this Edge-Laplacian leads
to low-pass filters that enforce (approximate) flow-conservation in the
processed signals. Moreover, we show how these new filters can be combined with
more classical Laplacian-based processing methods on the line-graph. Finally,
we illustrate the developed tools by denoising synthetic traffic flows on the
London street network.Comment: 5 pages, 2 figur
Network Inference from Consensus Dynamics
We consider the problem of identifying the topology of a weighted, undirected
network from observing snapshots of multiple independent consensus
dynamics. Specifically, we observe the opinion profiles of a group of agents
for a set of independent topics and our goal is to recover the precise
relationships between the agents, as specified by the unknown network . In order to overcome the under-determinacy of the problem at hand, we
leverage concepts from spectral graph theory and convex optimization to unveil
the underlying network structure. More precisely, we formulate the network
inference problem as a convex optimization that seeks to endow the network with
certain desired properties -- such as sparsity -- while being consistent with
the spectral information extracted from the observed opinions. This is
complemented with theoretical results proving consistency as the number of
topics grows large. We further illustrate our method by numerical experiments,
which showcase the effectiveness of the technique in recovering synthetic and
real-world networks.Comment: Will be presented at the 2017 IEEE Conference on Decision and Control
(CDC
Spectral partitioning of time-varying networks with unobserved edges
We discuss a variant of `blind' community detection, in which we aim to
partition an unobserved network from the observation of a (dynamical) graph
signal defined on the network. We consider a scenario where our observed graph
signals are obtained by filtering white noise input, and the underlying network
is different for every observation. In this fashion, the filtered graph signals
can be interpreted as defined on a time-varying network. We model each of the
underlying network realizations as generated by an independent draw from a
latent stochastic blockmodel (SBM). To infer the partition of the latent SBM,
we propose a simple spectral algorithm for which we provide a theoretical
analysis and establish consistency guarantees for the recovery. We illustrate
our results using numerical experiments on synthetic and real data,
highlighting the efficacy of our approach.Comment: 5 pages, 2 figure
Entrograms and coarse graining of dynamics on complex networks
Using an information theoretic point of view, we investigate how a dynamics
acting on a network can be coarse grained through the use of graph partitions.
Specifically, we are interested in how aggregating the state space of a Markov
process according to a partition impacts on the thus obtained lower-dimensional
dynamics. We highlight that for a dynamics on a particular graph there may be
multiple coarse grained descriptions that capture different, incomparable
features of the original process. For instance, a coarse graining induced by
one partition may be commensurate with a time-scale separation in the dynamics,
while another coarse graining may correspond to a different lower-dimensional
dynamics that preserves the Markov property of the original process. Taking
inspiration from the literature of Computational Mechanics, we find that a
convenient tool to summarise and visualise such dynamical properties of a
coarse grained model (partition) is the entrogram. The entrogram gathers
certain information-theoretic measures, which quantify how information flows
across time steps. These information theoretic quantities include the entropy
rate, as well as a measure for the memory contained in the process, i.e., how
well the dynamics can be approximated by a first order Markov process. We use
the entrogram to investigate how specific macro-scale connection patterns in
the state-space transition graph of the original dynamics result in desirable
properties of coarse grained descriptions. We thereby provide a fresh
perspective on the interplay between structure and dynamics in networks, and
the process of partitioning from an information theoretic perspective. We focus
on networks that may be approximated by both a core-periphery or a clustered
organization, and highlight that each of these coarse grained descriptions can
capture different aspects of a Markov process acting on the network.Comment: 17 pages, 6 figue
Graph-based Semi-Supervised & Active Learning for Edge Flows
We present a graph-based semi-supervised learning (SSL) method for learning
edge flows defined on a graph. Specifically, given flow measurements on a
subset of edges, we want to predict the flows on the remaining edges. To this
end, we develop a computational framework that imposes certain constraints on
the overall flows, such as (approximate) flow conservation. These constraints
render our approach different from classical graph-based SSL for vertex labels,
which posits that tightly connected nodes share similar labels and leverages
the graph structure accordingly to extrapolate from a few vertex labels to the
unlabeled vertices. We derive bounds for our method's reconstruction error and
demonstrate its strong performance on synthetic and real-world flow networks
from transportation, physical infrastructure, and the Web. Furthermore, we
provide two active learning algorithms for selecting informative edges on which
to measure flow, which has applications for optimal sensor deployment. The
first strategy selects edges to minimize the reconstruction error bound and
works well on flows that are approximately divergence-free. The second approach
clusters the graph and selects bottleneck edges that cross cluster-boundaries,
which works well on flows with global trends
Centrality measures for graphons: Accounting for uncertainty in networks
As relational datasets modeled as graphs keep increasing in size and their
data-acquisition is permeated by uncertainty, graph-based analysis techniques
can become computationally and conceptually challenging. In particular, node
centrality measures rely on the assumption that the graph is perfectly known --
a premise not necessarily fulfilled for large, uncertain networks. Accordingly,
centrality measures may fail to faithfully extract the importance of nodes in
the presence of uncertainty. To mitigate these problems, we suggest a
statistical approach based on graphon theory: we introduce formal definitions
of centrality measures for graphons and establish their connections to
classical graph centrality measures. A key advantage of this approach is that
centrality measures defined at the modeling level of graphons are inherently
robust to stochastic variations of specific graph realizations. Using the
theory of linear integral operators, we define degree, eigenvector, Katz and
PageRank centrality functions for graphons and establish concentration
inequalities demonstrating that graphon centrality functions arise naturally as
limits of their counterparts defined on sequences of graphs of increasing size.
The same concentration inequalities also provide high-probability bounds
between the graphon centrality functions and the centrality measures on any
sampled graph, thereby establishing a measure of uncertainty of the measured
centrality score. The same concentration inequalities also provide
high-probability bounds between the graphon centrality functions and the
centrality measures on any sampled graph, thereby establishing a measure of
uncertainty of the measured centrality score.Comment: Authors ordered alphabetically, all authors contributed equally. 21
pages, 7 figure
The stability of a graph partition: A dynamics-based framework for community detection
Recent years have seen a surge of interest in the analysis of complex
networks, facilitated by the availability of relational data and the
increasingly powerful computational resources that can be employed for their
analysis. Naturally, the study of real-world systems leads to highly complex
networks and a current challenge is to extract intelligible, simplified
descriptions from the network in terms of relevant subgraphs, which can provide
insight into the structure and function of the overall system.
Sparked by seminal work by Newman and Girvan, an interesting line of research
has been devoted to investigating modular community structure in networks,
revitalising the classic problem of graph partitioning.
However, modular or community structure in networks has notoriously evaded
rigorous definition. The most accepted notion of community is perhaps that of a
group of elements which exhibit a stronger level of interaction within
themselves than with the elements outside the community. This concept has
resulted in a plethora of computational methods and heuristics for community
detection. Nevertheless a firm theoretical understanding of most of these
methods, in terms of how they operate and what they are supposed to detect, is
still lacking to date.
Here, we will develop a dynamical perspective towards community detection
enabling us to define a measure named the stability of a graph partition. It
will be shown that a number of previously ad-hoc defined heuristics for
community detection can be seen as particular cases of our method providing us
with a dynamic reinterpretation of those measures. Our dynamics-based approach
thus serves as a unifying framework to gain a deeper understanding of different
aspects and problems associated with community detection and allows us to
propose new dynamically-inspired criteria for community structure.Comment: 3 figures; published as book chapte
- …