24 research outputs found
Human surfactant protein D alters oxidative stress and HMGA1 expression to induce p53 apoptotic pathway in eosinophil leukemic cell line
This article is made available through the Brunel Open Access Publishing Fund. Copyright: © 2013 Mahajan et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Surfactant protein D (SP-D), an innate immune molecule, has an indispensable role in host defense and regulation of
inflammation. Immune related functions regulated by SP-D include agglutination of pathogens, phagocytosis,
oxidative burst, antigen presentation, T lymphocyte proliferation, cytokine secretion, induction of apoptosis and
clearance of apoptotic cells. The present study unravels a novel ability of SP-D to reduce the viability of leukemic
cells (eosinophilic leukemic cell line, AML14.3D10; acute myeloid leukemia cell line, THP-1; acute lymphoid leukemia
cell lines, Jurkat, Raji; and human breast epithelial cell line, MCF-7), and explains the underlying mechanisms. SP-D
and a recombinant fragment of human SP-D (rhSP-D) induced G2/M phase cell cycle arrest, and dose and timedependent
apoptosis in the AML14.3D10 eosinophilic leukemia cell line. Levels of various apoptotic markers viz.
activated p53, cleaved caspase-9 and PARP, along with G2/M checkpoints (p21 and Tyr15 phosphorylation of cdc2)
showed significant increase in these cells. We further attempted to elucidate the underlying mechanisms of rhSP-D
induced apoptosis using proteomic analysis. This approach identified large scale molecular changes initiated by SPD
in a human cell for the first time. Among others, the proteomics analysis highlighted a decreased expression of
survival related proteins such as HMGA1, overexpression of proteins to protect the cells from oxidative burst, while a
drastic decrease in mitochondrial antioxidant defense system. rhSP-D mediated enhanced oxidative burst in
AML14.3D10 cells was confirmed, while antioxidant, N-acetyl-L-cysteine, abrogated the rhSP-D induced apoptosis.
The rhSP-D mediated reduced viability was specific to the cancer cell lines and viability of human PBMCs from
healthy controls was not affected. The study suggests involvement of SP-D in host’s immunosurveillance and
therapeutic potential of rhSP-D in the eosinophilic leukemia and cancers of other origins.Department of Biotechnology, Indi
Surfactant Protein-A Suppresses Eosinophil-Mediated Killing of Mycoplasma pneumoniae in Allergic Lungs
Surfactant protein-A (SP-A) has well-established functions in reducing bacterial and viral infections but its role in chronic lung diseases such as asthma is unclear. Mycoplasma pneumoniae (Mp) frequently colonizes the airways of chronic asthmatics and is thought to contribute to exacerbations of asthma. Our lab has previously reported that during Mp infection of non-allergic airways, SP-A aides in maintaining airway homeostasis by inhibiting an overzealous TNF-alpha mediated response and, in allergic mice, SP-A regulates eosinophilic infiltration and inflammation of the airway. In the current study, we used an in vivo model with wild type (WT) and SP-A−/− allergic mice challenged with the model antigen ovalbumin (Ova) that were concurrently infected with Mp (Ova+Mp) to test the hypothesis that SP-A ameliorates Mp-induced stimulation of eosinophils. Thus, SP-A could protect allergic airways from injury due to release of eosinophil inflammatory products. SP-A deficient mice exhibit significant increases in inflammatory cells, mucus production and lung damage during concurrent allergic airway disease and infection (Ova+Mp) as compared to the WT mice of the same treatment group. In contrast, SP-A deficient mice have significantly decreased Mp burden compared to WT mice. The eosinophil specific factor, eosinophil peroxidase (EPO), which has been implicated in pathogen killing and also in epithelial dysfunction due to oxidative damage of resident lung proteins, is enhanced in samples from allergic/infected SP-A−/− mice as compared to WT mice. In vitro experiments using purified eosinophils and human SP-A suggest that SP-A limits the release of EPO from Mp-stimulated eosinophils thereby reducing their killing capacity. These findings are the first to demonstrate that although SP-A interferes with eosinophil-mediated biologic clearance of Mp by mediating the interaction of Mp with eosinophils, SP-A simultaneously benefits the airway by limiting inflammation and damage
Glycobiology of cell death: when glycans and lectins govern cell fate
Although one typically thinks of carbohydrates as associated with cell growth and viability, glycosylation also has an integral role in many processes leading to cell death. Glycans, either alone or complexed with glycan-binding proteins, can deliver intracellular signals or control extracellular processes that promote initiation, execution and resolution of cell death programs. Herein, we review the role of glycans and glycan-binding proteins as essential components of the cell death machinery during physiologic and pathologic settings.Fil: Lichtenstein, Rachel. Ben-Gurion University of the Negev. Faculty of Engineering. Department of Biotechnology Engineering; IsraelFil: Rabinovich, Gabriel Adrian. Consejo Nacional de Investigaciones CientÃficas y Técnicas. Instituto de BiologÃa y Medicina Experimental (i); Argentina. Universidad de Buenos Aires. Facultad de Cs.exactas y Naturales. Departamento de Quimica Biologica; Argentin
High-throughput differential scanning fluorimetry of GFP-tagged proteins
Differential scanning fluorimetry is useful for a wide variety of applications including characterization of protein function, structure–activity relationships, drug screening, and optimization of buffer conditions for protein purification, enzyme activity, and crystallization. A limitation of classic differential scanning fluorimetry is its reliance on highly purified protein samples. This limitation is overcome through differential scanning fluorimetry of GFP-tagged proteins (DSF-GTP). DSF-GTP specifically measures the unfolding and aggregation of a target protein fused to GFP through its proximal perturbation effects on GFP fluorescence. As a result of this unique principle, DSF-GTP can specifically measure the thermal stability of a target protein in the presence of other proteins. Additionally, the GFP provides a unique in-assay quality control measure. Here, we describe the workflow, steps, and important considerations for executing a DSF-GTP experiment in a 96-well plate format
Recombinant surfactant protein-D selectively increases apoptosis in eosinophils of allergic asthmatics and enhances uptake of apoptotic eosinophils by macrophages.
Pulmonary surfactant protein-D (SP-D) is a multifunctional, pattern recognition molecule involved in resistance to allergen challenge and pulmonary inflammation. In view of therapeutic effects of exogenous SP-D or recombinant fragment of human surfactant protein-D (rhSP-D) (composed of eight Gly-X-Y collagen repeat sequences, homotrimeric neck and lectin domains) in murine models of lung allergy and hypereosinophilic SP-D gene-deficient mice, we investigated the possibility of a direct interaction of purified rhSP-D with human eosinophils derived from allergic patients and healthy donors. rhSP-D showed a sugar- and calcium-dependent binding to human eosinophils, suggesting involvement of its carbohydrate recognition domain. While eosinophils from allergic patients showed a significant increase in apoptosis, oxidative burst and CD69 expression in presence of rhSP-D, eosinophils from healthy donors showed no significant change. However, these eosinophils from healthy donors when primed with IL-5 exhibited increase in apoptosis on incubation with rhSP-D. Apoptosis mediated by rhSP-D in primed eosinophils was not affected by the antioxidant, N-acetyl-L-cysteine. There was a manifold increase in binding of rhSP-D to apoptotic eosinophils than the normal eosinophils and rhSP-D induced a significant increase in uptake of apoptotic eosinophils by J774A.1 macrophage cells. The study suggests that rhSP-D mediated preferential increase of apoptosis of primed eosinophils while not affecting the normal eosinophils and increased phagocytosis of apoptotic eosinophils may be important mechanisms of rhSP-D and plausibly SP-D-mediated resolution of allergic eosinophilic inflammation in vivo