308 research outputs found
The effect of beam inclination on the performance of a passive vibration isolator using buckled beams
Passive vibration isolators are desired to have both high static stiffness to support large static load and low local stiffness to reduce the displacement transmissibility at frequencies greater than resonance. Utilization of a vertical buckled beam as a spring component is one way to realize such a stiffness characteristic since it exhibits a smaller ratio of local stiffness to static stiffness than that of a linear spring. This paper investigates the behaviour of a vibration isolator using inclined beams as well as vertical ones and examines the effect of beam inclination for the purpose of improving the isolation performance. The experimental system investigated has anisolated mass which is supported by a combination of two types of beams: buckled beams and constraining beams. The buckled beams can be inclined from the vertical by attachment devices, and the constraining beams are employed to prevent off-axis motion of the isolated mass. The results demonstrate that the inclination of the buckled beams reduces the resonance frequency and improves the displacement transmissibility at frequencies greater than resonance
Collinear and Soft Divergences in Perturbative Quantum Gravity
Collinear and soft divergences in perturbative quantum gravity are
investigated to arbitrary orders in amplitudes for wide-angle scattering, using
methods developed for gauge theories. We show that collinear singularities
cancel when all such divergent diagrams are summed over, by using the
gravitational Ward identity that decouples the unphysical polarizations from
the S-matrix. This analysis generalizes a result previously demonstrated in the
eikonal approximation. We also confirm that the only virtual graviton
corrections that give soft logarithmic divergences are of the ladder and
crossed ladder type.Comment: 10 pages, 12 figure
Suppressing Quantum Fluctuations in Classicalization
We study vacuum quantum fluctuations of simple Nambu-Goldstone bosons -
derivatively coupled single scalar-field theories possessing shift-symmetry in
field space. We argue that quantum fluctuations of the interacting field can be
drastically suppressed with respect to the free-field case. Moreover, the
power-spectrum of these fluctuations can soften to become red for sufficiently
small scales. In quasiclassical approximation, we demonstrate that this
suppression can only occur for those theories that admit such classical static
backgrounds around which small perturbations propagate faster than light. Thus,
a quasiclassical softening of quantum fluctuations is only possible for
theories which classicalize instead of having a usual Lorentz invariant and
local Wilsonian UV- completion. We illustrate our analysis by estimating the
quantum fluctuations for the DBI-like theories.Comment: 6 pages, no figures, published version, more general discussion of
uncertainty relation in QFT, improved and more general derivation of the main
resul
Modified general relativity as a model for quantum gravitational collapse
We study a class of Hamiltonian deformations of the massless
Einstein-Klein-Gordon system in spherical symmetry for which the Dirac
constraint algebra closes. The system may be regarded as providing effective
equations for quantum gravitational collapse. Guided by the observation that
scalar field fluxes do not follow metric null directions due to the
deformation, we find that the equations take a simple form in characteristic
coordinates. We analyse these equations by a unique combination of numerical
methods and find that Choptuik's mass scaling law is modified by a mass gap as
well as jagged oscillations. Furthermore, the results are universal with
respect to different initial data profiles and robust under changes of the
deformation.Comment: 22 pages, 4 figure
Ezrin Is Highly Expressed in Early Thymocytes, but Dispensable for T Cell Development in Mice
Ezrin/radixin/moesin (ERM) proteins are highly homologous proteins that function to link cargo molecules to the actin cytoskeleton. Ezrin and moesin are both expressed in mature lymphocytes, where they play overlapping roles in cell signaling and polarity, but their role in lymphoid development has not been explored.We characterized ERM protein expression in lymphoid tissues and analyzed the requirement for ezrin expression in lymphoid development. In wildtype mice, we found that most cells in the spleen and thymus express both ezrin and moesin, but little radixin. ERM protein expression in the thymus was differentially regulated, such that ezrin expression was highest in immature thymocytes and diminished during T cell development. In contrast, moesin expression was low in early thymocytes and upregulated during T cell development. Mice bearing a germline deletion of ezrin exhibited profound defects in the size and cellularity of the spleen and thymus, abnormal thymic architecture, diminished hematopoiesis, and increased proportions of granulocytic precursors. Further analysis using fetal liver chimeras and thymic transplants showed that ezrin expression is dispensable in hematopoietic and stromal lineages, and that most of the defects in lymphoid development in ezrin(-/-) mice likely arise as a consequence of nutritional stress.We conclude that despite high expression in lymphoid precursor cells, ezrin is dispensable for lymphoid development, most likely due to redundancy with moesin
Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration
Tissue development and regeneration depend on cell-cell interactions and signals that target stem cells and their immediate progeny. However, the cellular behaviours that lead to a properly regenerated tissue are not well understood. Using a new, non-invasive, intravital two-photon imaging approach we study physiological hair-follicle regeneration over time in live mice. By these means we have monitored the behaviour of epithelial stem cells and their progeny during physiological hair regeneration and addressed how the mesenchyme influences their behaviour. Consistent with earlier studies, stem cells are quiescent during the initial stages of hair regeneration, whereas the progeny are more actively dividing. Moreover, stem cell progeny divisions are spatially organized within follicles. In addition to cell divisions, coordinated cell movements of the progeny allow the rapid expansion of the hair follicle. Finally, we show the requirement of the mesenchyme for hair regeneration through targeted cell ablation and long-term tracking of live hair follicles. Thus, we have established an in vivo approach that has led to the direct observation of cellular mechanisms of growth regulation within the hair follicle and that has enabled us to precisely investigate functional requirements of hair-follicle components during the process of physiological regeneration. © 2012 Macmillan Publishers Limited. All rights reserved
The Impact of Oral Health on Taste Ability in Acutely Hospitalized Elderly
Objective: To investigate to what extent various oral health variables are associated with taste ability in acutely hospitalized elderly. Background: Impaired taste may contribute to weight loss in elderly. Many frail elderly have poor oral health characterized by caries, poor oral hygiene, and dry mouth. However, the possible influence of such factors on taste ability in acutely hospitalized elderly has not been investigated. Materials and Methods: The study was cross-sectional. A total of 174 (55 men) acutely hospitalized elderly, coming from their own homes and with adequate cognitive function, were included. Dental status, decayed teeth, oral bacteria, oral hygiene, dry mouth and tongue changes were recorded. Growth of oral bacteria was assessed with CRTH Bacteria Kit. Taste ability was evaluated with 16 taste strips impregnated with sweet, sour, salty and bitter taste solutions in 4 concentrations each. Correct identification was given score 1, and maximum total taste score was 16. Results: Mean age was 84 yrs. (range 70–103 yrs.). Total taste score was significantly and markedly reduced in patients with decayed teeth, poor oral hygiene, high growth of oral bacteria and dry mouth. Sweet and salty taste were particularly impaired in patients with dry mouth. Sour taste was impaired in patients with high growth of oral bacteria. Conclusion: This study shows that taste ability was reduced in acutely hospitalized elderly with caries activity, high growt
Inelastic Black Hole Scattering from Charged Scalar Amplitudes
We explain how the lowest-order classical gravitational radiation produced
during the inelastic scattering of two Schwarzschild black holes in General
Relativity can be obtained from a tree scattering amplitude in gauge theory
coupled to scalar fields. The gauge calculation is related to gravity through
the double copy. We remove unwanted scalar forces which can occur in the double
copy by introducing a massless scalar in the gauge theory, which is treated as
a ghost in the link to gravity. We hope these methods are a step towards a
direct application of the double copy at higher orders in classical
perturbation theory, with the potential to greatly streamline gravity
calculations for phenomenological applications.Comment: 28 pages, 6 figure
Thermal Contraction of Electrodeposited Bi/BiSb Superlattice Nanowires
The lattice parameter of Bi/BiSb superlattice nanowire (SLNW) has been measured using in situ high-temperature X-ray diffraction method. The single crystalline Bi/BiSb SLNW arrays with different bilayer thicknesses have been fabricated within the porous anodic alumina membranes (AAMs) by a charge-controlled pulse electrodeposition. Different temperature dependences of the lattice parameter and thermal expansion coefficient were found for the SLNWs. It was found that the thermal expansion coefficient of the SLNWs with a large bilayer thickness has weak temperature dependence, and the interface stress and defect are the main factors responsible for the thermal contraction of the SLNWs
- …