131 research outputs found

    Vulnerability of the British swine industry to classical swine fever

    Get PDF
    Classical swine fever (CSF) is a notifiable, highly contagious viral disease of swine which results in severe welfare and economic consequences in affected countries. To improve preparedness, it is critical to have some understanding of how CSF would spread should it be introduced. Based on the data recorded during the 2000 epidemic of CSF in Great Britain (GB), a spatially explicit, premises-based model was developed to explore the risk of CSF spread in GB. We found that large outbreaks of CSF would be rare and generated from a limited number of areas in GB. Despite the consistently low vulnerability of the British swine industry to large CSF outbreaks, we identified concerns with respect to the role played by the non-commercial sector of the industry. The model further revealed how various epidemiological features may influence the spread of CSF in GB, highlighting the importance of between-farm biosecurity in preventing widespread dissemination of the virus. Knowledge of factors affecting the risk of spread are key components for surveillance planning and resource allocation, and this work provides a valuable stepping stone in guiding policy on CSF surveillance and control in GB

    Predictors of complications after endoscopic retrograde cholangiopancreatography: a prognostic model for early discharge

    Get PDF
    Background: Several studies have evaluated predictors for complications of endoscopic retrograde cholangiopancreatography (ERCP), but their relative importance is unknown. In addition, currently used blood tests to detect post-ERCP pancreatitis are inconsistent. The aim of this study was to determine predictors of post-ERCP complications that could discriminate between patients at highest and lowest risk of post-ERCP complications and to develop a model that is able to identify patients that can safely be discharged shortly after ERCP. Methods: In a single-center, retrospective analysis over the period 2002-2007, predictors of post-ERCP complications were evaluated in a multivariable analysis and compared with those identified from a literature review. A prognostic model was developed based on these risk factors, which was further evaluated in a prospective patient population. Results: From our retrospective analysis and literature review, we selected the eight most important risk factors for post-ERCP pancreatitis and cholangitis. In the prognostic model, the risk factors (precut) sphincterotomy, sphincter of Oddi dysfunction, younger age, female gender, history of pancreatitis, p

    Increased risk of pneumonia in residents living near poultry farms: does the upper respiratory tract microbiota play a role?

    Get PDF
    BACKGROUND: Air pollution has been shown to increase the susceptibility to community-acquired pneumonia (CAP). Previously, we observed an increased incidence of CAP in adults living within 1 km from poultry farms, potentially related to particulate matter and endotoxin emissions. We aim to confirm the increased risk of CAP near poultry farms by refined spatial analyses, and we hypothesize that the oropharyngeal microbiota composition in CAP patients may be associated with residential proximity to poultry farms. METHODS: A spatial kernel model was used to analyze the association between proximity to poultry farms and CAP diagnosis, obtained from electronic medical records of 92,548 GP patients. The oropharyngeal microbiota composition was determined in 126 hospitalized CAP patients using 16S-rRNA-based sequencing, and analyzed in relation to residential proximity to poultry farms. RESULTS: Kernel analysis confirmed a significantly increased risk of CAP when living near poultry farms, suggesting an excess risk up to 1.15 km, followed by a sharp decline. Overall, the oropharyngeal microbiota composition differed borderline significantly between patients living <1 km and ≥1 km from poultry farms (PERMANOVA p = 0.075). Results suggested a higher abundance of Streptococcus pneumoniae (mean relative abundance 34.9% vs. 22.5%, p = 0.058) in patients living near poultry farms, which was verified by unsupervised clustering analysis, showing overrepresentation of a S. pneumoniae cluster near poultry farms (p = 0.049). CONCLUSION: Living near poultry farms is associated with an 11% increased risk of CAP, possibly resulting from changes in the upper respiratory tract microbiota composition in susceptible individuals. The abundance of S. pneumoniae near farms needs to be replicated in larger, independent studies

    Observation of the solid-state photo-CIDNP effect in entire cells of cyanobacteria Synechocystis

    Get PDF
    Cyanobacteria are widely used as model organism of oxygenic photosynthesis due to being the simplest photosynthetic organisms containing both photosystem I and II (PSI and PSII). Photochemically induced dynamic nuclear polarization (photo-CIDNP) 13C magic-angle spinning (MAS) NMR is a powerful tool in understanding the photosynthesis machinery down to atomic level. Combined with selective isotope enrichment this technique has now opened the door to study primary charge separation in whole living cells. Here, we present the first photo-CIDNP observed in whole cells of the cyanobacterium Synechocystis

    Pichia pastoris regulates its gene-specific response to different carbon sources at the transcriptional, rather than the translational, level

    Get PDF
    Background: The methylotrophic, Crabtree-negative yeast Pichia pastoris is widely used as a heterologous protein production host. Strong inducible promoters derived from methanol utilization genes or constitutive glycolytic promoters are typically used to drive gene expression. Notably, genes involved in methanol utilization are not only repressed by the presence of glucose, but also by glycerol. This unusual regulatory behavior prompted us to study the regulation of carbon substrate utilization in different bioprocess conditions on a genome wide scale. Results: We performed microarray analysis on the total mRNA population as well as mRNA that had been fractionated according to ribosome occupancy. Translationally quiescent mRNAs were defined as being associated with single ribosomes (monosomes) and highly-translated mRNAs with multiple ribosomes (polysomes). We found that despite their lower growth rates, global translation was most active in methanol-grown P. pastoris cells, followed by excess glycerol- or glucose-grown cells. Transcript-specific translational responses were found to be minimal, while extensive transcriptional regulation was observed for cells grown on different carbon sources. Due to their respiratory metabolism, cells grown in excess glucose or glycerol had very similar expression profiles. Genes subject to glucose repression were mainly involved in the metabolism of alternative carbon sources including the control of glycerol uptake and metabolism. Peroxisomal and methanol utilization genes were confirmed to be subject to carbon substrate repression in excess glucose or glycerol, but were found to be strongly de-repressed in limiting glucose-conditions (as are often applied in fed batch cultivations) in addition to induction by methanol. Conclusions: P. pastoris cells grown in excess glycerol or glucose have similar transcript profiles in contrast to S. cerevisiae cells, in which the transcriptional response to these carbon sources is very different. The main response to different growth conditions in P. pastoris is transcriptional; translational regulation was not transcript-specific. The high proportion of mRNAs associated with polysomes in methanol-grown cells is a major finding of this study; it reveals that high productivity during methanol induction is directly linked to the growth condition and not only to promoter strength

    Modelling the Innate Immune Response against Avian Influenza Virus in Chicken

    Get PDF
    At present there is limited understanding of the host immune response to (low pathogenic) avian influenza virus infections in poultry. Here we develop a mathematical model for the innate immune response to avian influenza virus in chicken lung, describing the dynamics of viral load, interferon-α, -β and -γ, lung (i.e. pulmonary) cells and Natural Killer cells. We use recent results from experimentally infected chickens to validate some of the model predictions. The model includes an initial exponential increase of the viral load, which we show to be consistent with experimental data. Using this exponential growth model we show that the duration until a given viral load is reached in experiments with different inoculation doses is consistent with a model assuming a linear relationship between initial viral load and inoculation dose. Subsequent to the exponential-growth phase, the model results show a decline in viral load caused by both target-cell limitation as well as the innate immune response. The model results suggest that the temporal viral load pattern in the lungs displayed in experimental data cannot be explained by target-cell limitation alone. For biologically plausible parameter values the model is able to qualitatively match to data on viral load in chicken lungs up until approximately 4 days post infection. Comparison of model predictions with data on CD107-mediated degranulation of Natural Killer cells yields some discrepancy also for earlier days post infection
    corecore