4,121 research outputs found
Locally continuously perfect groups of homeomorphisms
The notion of a locally continuously perfect group is introduced and studied.
This notion generalizes locally smoothly perfect groups introduced by Haller
and Teichmann. Next, we prove that the path connected identity component of the
group of all homeomorphisms of a manifold is locally continuously perfect. The
case of equivariant homeomorphism group and other examples are also considered.Comment: 14 page
Magnification Ratio of the Fluctuating Light in Gravitational Lens 0957+561
Radio observations establish the B/A magnification ratio of gravitational
lens 0957+561 at about 0.75. Yet, for more than 15 years, the optical
magnfication ratio has been between 0.9 and 1.12. The accepted explanation is
microlensing of the optical source. However, this explanation is mildly
discordant with (i) the relative constancy of the optical ratio, and (ii)
recent data indicating possible non-achromaticity in the ratio. To study these
issues, we develop a statistical formalism for separately measuring, in a
unified manner, the magnification ratio of the fluctuating and constant parts
of the light curve. Applying the formalism to the published data of Kundi\'c et
al. (1997), we find that the magnification ratios of fluctuating parts in both
the g and r colors agrees with the magnification ratio of the constant part in
g-band, and tends to disagree with the r-band value. One explanation could be
about 0.1 mag of consistently unsubtracted r light from the lensing galaxy G1,
which seems unlikely. Another could be that 0957+561 is approaching a caustic
in the microlensing pattern.Comment: 12 pages including 1 PostScript figur
Device-spectroscopy of magnetic field effects in a polyfluorene organic light-emitting diode
We perform charge-induced absorption and electroluminescence spectroscopy in
a polyfluorene organic magnetoresistive device. Our experiments allow us to
measure the singlet exciton, triplet exciton and polaron densities in a live
device under an applied magnetic field, and to distinguish between three
different models that were proposed to explain organic magnetoresistance. These
models are based on different spin-dependent interactions, namely exciton
formation, triplet exciton-polaron quenching and bipolaron formation. We show
that the singlet exciton, triplet exciton and polaron densities and
conductivity all increase with increasing magnetic field. Our data are
inconsistent with the exciton formation and triplet-exciton polaron quenching
models.Comment: 4 pages, two figure
Gamma-ray probe of cosmic-ray pressure in galaxy clusters and cosmological implications
Cosmic rays produced in cluster accretion and merger shocks provide pressure
to the intracluster medium (ICM) and affect the mass estimates of galaxy
clusters. Although direct evidence for cosmic-ray ions in the ICM is still
lacking, they produce gamma-ray emission through the decay of neutral pions
produced in their collisions with ICM nucleons. We investigate the capability
of the Gamma-ray Large Area Space Telescope (GLAST) and imaging atmospheric
Cerenkov telescopes (IACTs) for constraining the cosmic-ray pressure
contribution to the ICM. We show that GLAST can be used to place stringent
upper limits, a few per cent for individual nearby rich clusters, on the ratio
of pressures of the cosmic rays and thermal gas. We further show that it is
possible to place tight (<~10%) constraints for distant (z <~ 0.25) clusters in
the case of hard spectrum, by stacking signals from samples of known clusters.
The GLAST limits could be made more precise with the constraint on the
cosmic-ray spectrum potentially provided by IACTs. Future gamma-ray
observations of clusters can constrain the evolution of cosmic-ray energy
density, which would have important implications for cosmological tests with
upcoming X-ray and Sunyaev-Zel'dovich effect cluster surveys.Comment: 12 pages, 5 figures; extended discussions; accepted by MNRA
Fast approximation of angle-dependent partial redistribution in moving atmospheres
Radiative transfer modeling of spectral lines including partial
redistribution (PRD) effects requires the evaluation of the ratio of the
emission to the absorption profile. This quantity requires a large amount of
computational work if one employs the angle-dependent redistribution function,
which prohibits its use in 3D radiative transfer computations with model
atmospheres containing velocity fields. We aim to provide a method to compute
the emission to absorption profile ratio that requires less computational work
but retains the effect of angle-dependent scattering in the resulting line
profiles.
We present a method to compute the profile ratio that employs the
angle-averaged redistribution function and wavelength transforms to and from
the rest frame of the scattering particles. We compare the emergent line
profiles of the \MgII\,k and \Lyalpha\ lines computed with angle-dependent PRD,
angle-averaged PRD and our new method in two representative test atmospheres.
The new method yields a good approximation of true angle-dependent profile
ratio and the resulting emergent line profiles while keeping the computational
speed and simplicity of angle-averaged PRD theory.Comment: Accepted for publication in A&
Statistical equilibrium of silicon in the solar atmosphere
The statistical equilibrium of neutral and ionised silicon in the solar
photosphere is investigated. Line formation is discussed and the solar silicon
abundance determined. High-resolution solar spectra were used to determine
solar values by comparison with Si line synthesis
based on LTE and NLTE level populations. The results will be used in a
forthcoming paper for differential abundance analyses of metal-poor stars. A
detailed analysis of silicon line spectra leads to setting up realistic model
atoms, which are exposed to interactions in plane-parallel solar atmospheric
models. The resulting departure coefficients are entered into a line-by-line
analysis of the visible and near-infrared solar silicon spectrum. The
statistical equilibrium of \ion{Si}{i} turns out to depend marginally on
bound-free interaction processes, both radiative and collisional. Bound-bound
interaction processes do not play a significant role either, except for
hydrogen collisions, which have to be chosen adequately for fitting the cores
of the near-infrared lines. Except for some near-infrared lines, the NLTE
influence on the abundances is weak. Taking the deviations from LTE in silicon
into account, it is possible to calculate the ionisation equilibrium from
neutral and ionised lines. The solar abundance based on the experimental
-values of Garz corrected for the Becker et al.'s measurement is . Combined with an extended line sample with selected NIST -values, the
solar abundance is , with a nearly perfect ionisation
equilibrium of \Delta\log\epsilon_\odot(\ion{Si}{ii}/\ion{Si}{i}) = -0.01.Comment: 13pages 10 figures. A&A acceptte
Chaos in a Relativistic 3-body Self-Gravitating System
We consider the 3-body problem in relativistic lineal gravity and obtain an
exact expression for its Hamiltonian and equations of motion. While
general-relativistic effects yield more tightly-bound orbits of higher
frequency compared to their non-relativistic counterparts, as energy increases
we find in the equal-mass case no evidence for either global chaos or a
breakdown from regular to chaotic motion, despite the high degree of
non-linearity in the system. We find numerical evidence for a countably
infinite class of non-chaotic orbits, yielding a fractal structure in the outer
regions of the Poincare plot.Comment: 9 pages, LaTex, 3 figures, final version to appear in Phys. Rev. Let
Predicted FeII Emission-Line Strengths from Active Galactic Nuclei
We present theoretical FeII emission line strengths for physical conditions
typical of Active Galactic Nuclei with Broad-Line Regions. The FeII line
strengths were computed with a precise treatment of radiative transfer using
extensive and accurate atomic data from the Iron Project. Excitation mechanisms
for the FeII emission included continuum fluorescence, collisional excitation,
self-fluorescence amoung the FeII transitions, and fluorescent excitation by
Lyman-alpha and Lyman-beta. A large FeII atomic model consisting of 827 fine
structure levels (including states to E ~ 15 eV) was used to predict fluxes for
approximately 23,000 FeII transitions, covering most of the UV, optical, and IR
wavelengths of astrophysical interest. Spectral synthesis for wavelengths from
1600 Angstroms to 1.2 microns is presented. Applications of present theoretical
templates to the analysis of observations are described. In particular, we
discuss recent observations of near-IR FeII lines in the 8500 Angstrom -- 1
micron region which are predicted by the Lyman-alpha fluorescence mechanism. We
also compare our UV spectral synthesis with an empirical iron template for the
prototypical, narrow-line Seyfert galaxy I Zw 1. The theoretical FeII template
presented in this work should also applicable to a variety of objects with FeII
spectra formed under similar excitation conditions, such as supernovae and
symbiotic stars.Comment: 33 pages, 15 postscript figure
Radio and gamma-ray constraints on dark matter annihilation in the Galactic center
We determine upper limits on the dark matter (DM) self-annihilation cross
section for scenarios in which annihilation leads to the production of
electron--positron pairs. In the Galactic centre (GC), relativistic electrons
and positrons produce a radio flux via synchroton emission, and a gamma ray
flux via bremsstrahlung and inverse Compton scattering. On the basis of
archival, interferometric and single-dish radio data, we have determined the
radio spectrum of an elliptical region around the Galactic centre of extent 3
degrees semi-major axis (along the Galactic plane) and 1 degree semi-minor axis
and a second, rectangular region, also centered on the GC, of extent 1.6
degrees x 0.6 degrees. The radio spectra of both regions are non-thermal over
the range of frequencies for which we have data: 74 MHz -- 10 GHz. We also
consider gamma-ray data covering the same region from the EGRET instrument
(about GeV) and from HESS (around TeV). We show how the combination of these
data can be used to place robust constraints on DM annihilation scenarios, in a
way which is relatively insensitive to assumptions about the magnetic field
amplitude in this region. Our results are approximately an order of magnitude
more constraining than existing Galactic centre radio and gamma ray limits. For
a DM mass of m_\chi =10 GeV, and an NFW profile, we find that the
velocity-averaged cross-section must be less than a few times 10^-25 cm^3 s^-1.Comment: 14 pages, 9 figures. Version accepted for publication in PRD.
Reference section updated/extended
The dissipative effect of thermal radiation loss in high-temperature dense plasmas
A dynamical model based on the two-fluid dynamical equations with energy
generation and loss is obtained and used to investigate the self-generated
magnetic fields in high-temperature dense plasmas such as the solar core. The
self-generation of magnetic fields might be looked at as a
self-organization-type behavior of stochastic thermal radiation fields, as
expected for an open dissipative system according to Prigogine's theory of
dissipative structures.Comment: 4 pages, 1 postscript figure included; RevTeX3.0, epsf.tex neede
- …