14 research outputs found

    Phosphorus mobility under short-term anoxic conditions in two shallow eutrophic coastal systems (Curonian and Sacca di Goro lagoons)

    No full text
    The effects of short-term anoxia on phosphorus mobility were investigated in estuarine sediments collected from two eutrophic European lagoons. Study areas differ with regard to climate and salinity: the boreal Curonian Lagoon (Lithuania) is oligohaline while the Mediterranean Sacca di Goro (Italy) is mesohaline. In each lagoon two sites were chosen representing areas impacted by river plume discharge and areas impacted by high organic matter deposition. Benthic fluxes of dissolved oxygen, inorganic phosphorus (DIP), iron (Fe2+) and manganese (Mn2+) were measured by dark intact core incubations in oxic and anoxic conditions. The latter were induced by incubation prolonged by up to 40h depending on oxygen consumption rates. Solid phase P pools and pore water profiles of DIP, Fe2+, Mn2+ and sulfides were also measured before and after the induction of anoxia. Although incubation temperature and organic matter content were similar in plume and organic impacted areas of the two estuaries, higher benthic oxygen consumption rates were observed in Sacca di Goro, suggesting higher reactivity of the organic pool. Short-term anoxia had a significant effect on benthic fluxes of DIP (sulfide and Fe2+) only at the organic-rich and saline site of Sacca di Goro while internal buffers prevented inorganic P regeneration at the remaining sites. However, the analysis of pore water and solid phase pools revealed large variations during the transition and provided insights on the mechanisms controlling P dynamics. Both stations influenced by river plume deposition had high total inorganic P content (but most of it was refractory) and high reactive Mn pools, continuously regenerated by ventilation and irrigation of sediments by macrofauna. In these sites, oxygen depletion resulted in large accumulation of reduced Mn in the pore water but high fluxes of Mn2+ were also measured in the oxic part of the incubation suggesting the relevance of this respiration process. Thus Mn reduction preserved oxidized Fe pool and ultimately prevent P mobilization. Our results suggest that fluxes of DIP across the sediment-water interface are controlled by an array of different and site-specific mechanisms. These biogeochemical buffers are effective and contrast massive P release to the water column in highly productive systems as coastal lagoons, where episodes of transient oxygen shortage are frequent

    Benthic metabolism in fluvial sediments with larvae of lampetra sp

    No full text
    Lampreys spend their larval stage within fine sand fluvial sediments, where they burrow and act as filter feeders. Lamprey larvae (ammocoetes) can significantly affect benthic-pelagic coupling and nutrient cycling in rivers, due to high densities. However, their bioturbation, feeding and excretion activities are still poorly explored. These aspects were investigated by means of laboratory incubations of intact sediments added with ammocoetes and of animals alone. Oxygen respiration, nutrient fluxes and excretion rates were determined. Individual ammocoete incubations suggested that biomass-specific oxygen consumption and ammonium, reactive phosphorus and silica excretion were size-dependent, and greater in small compared to large individuals. The comparison of ammocoetes metabolic rates with rates measured in intact sediments revealed that ammocoetes activity decreases significantly when they are burrowed in sediments. Furthermore, results suggest that a major fraction of ammonium excreted by ammocoetes was assimilated by benthic microbes or microalgae to overcome in situ N-limitation. Alternatively, part of the excreted ammonium was oxidized and denitrified within sediments, as nitrate uptake rather increased along with ammocoetes density. Ammocoetes excreted reactive phosphorus and silica but such production was not apparent in bioturbated sediments, likely due to microbial or microalgal uptake or to immobilization in sediments

    Drivers of cyanobacterial blooms in a hypertrophic lagoon

    No full text
    The Curonian Lagoon is Europe's largest lagoon and one of the most seriously impacted by harmful blooms of cyanobacteria. Intensive studies over the past 20 years have allowed us to identify the major drivers determining the composition and spatial extent of hyperblooms in this system. We summarize and discuss the main outcomes of these studies and provide an updated, conceptual scheme of the multiple interactions between climatic and hydrologic factors, and their influence on internal and external processes that promote cyanobacterial blooms. Retrospective analysis of remote sensed images demonstrated the variability of blooms in terms of timing, extension and intensity, suggesting that they occur only under specific circumstances. Monthly analysis of nutrient loads and stoichiometry from the principal tributary (Nemunas River) revealed large interannual differences in the delivery of key elements, but summer months were always characterized by a strong dissolved inorganic N (and Si) limitation, that depresses diatoms and favors the dominance of cyanobacteria. Cyanobacteria blooms occurred during high water temperatures, long water residence time and low-wind conditions. The blooms induce transient (night-time) hypoxia, which stimulates the release of iron-bound P, producing a positive feedback for blooms of N-fixing cyanobacteria. Consumermediated nutrient recycling by dreissenid mussels, chironomid larvae, cyprinids and large bird colonies, may also affect P availability, but their role as drivers of cyanobacteria blooms is understudied

    Seasonal effect of zebra mussel colonies on benthic processes in the temperate mesotrophic Plateliai Lake, Lithuania

    No full text
    Sparse colonies of zebra mussel (Dreissena polymorpha) create net heterotrophic sediment patches via respiration, excretion, and biodeposition activities, but their effect as biogeochemical hotspots is scarcely investigated in nutrient-limited ecosystems. We analyzed the seasonal effect of zebra mussel colonies on benthic respiration (O2, TCO2, N2, and CH4) and nutrient fluxes (NH4+, NOx−, SRP, and SiO2) in a macrophyte-dominated mesotrophic temperate lake. Intact sediments with and without zebra mussel aggregates were collected in winter, summer, and autumn, and incubated to measure fluxes. The contribution of mussel colonies alone to benthic metabolism was also quantified. Sediments with mussels always had higher rates of respiration (O2 and TCO2) and nutrient recycling (NH4+ and SRP) as compared to bare sediments, while there was no effect on CH4, NO3−, and SiO2 fluxes. Mussel colonies stimulated nitrogen removal via denitrification, but only in the summer. The effect of colonies was particularly evident in warmer periods, due to mussel respiration and excretion and to biodeposits that increased microbial activity in sediments. In this mesotrophic lake, mussel aggregates contribute to alleviate nutrient (N and P) limitation, but their heterotrophic activity is likely buffered by nutrient uptake and oxygen production by submersed vegetation

    Essence of the patterns of cover and richness of intertidal hard bottom communities: a pan-European study

    No full text
    Coastal ecosystems are highly complex and driven by multiple environmental factors. To date we lack scientific evidence for the relative contribution of natural and anthropogenic drivers for the majority of marine habitats in order to adequately assess the role of different stressors across the European seas. Such relationship can be investigated by analysing the correlation between environmental variables and biotic patterns in multivariate space and taking into account non-linearities. Within the framework of the EMBOS (European Marine Biodiversity Observatory System) programme, hard bottom intertidal communities were sampled in a standardized way across European seas. Links between key natural and anthropogenic drivers and hard bottom communities were analysed using Boosted Regression Trees modelling. The study identified strong interregional variability and showed that patterns of hard bottom macroalgal and invertebrate communities were primarily a function of tidal regime, nutrient loading and water temperature (anomalies). The strength and shape of functional form relationships varied widely however among types of organisms (understorey algae composing mostly filamentous species, canopy-forming algae or sessile invertebrates) and aggregated community variables (cover or richness). Tidal regime significantly modulated the effect of nutrient load on the cover and richness of understorey algae and sessile invertebrates. In contrast, hydroclimate was more important for canopy algae and temperature anomalies and hydroclimate separately or interactively contributed to the observed patterns. The analyses also suggested that climate-induced shifts in weather patterns may result in the loss of algal richness and thereby in the loss of functional diversity in European hard bottom intertidal areas

    Consistent patterns of spatial variability between NE Atlantic and Mediterranean rocky shores

    No full text
    In the frame of the COST ACTION ‘EMBOS’ (Development and implementation of a pan-European Marine Biodiversity Observatory System), coverage of intertidal macroalgae was estimated at a range of marine stations along the European coastline (Subarctic, Baltic, Atlantic, Mediterranean). Based on these data, we tested whether patterns in macroalgal diversity and distribution along European intertidal rocky shores could be explained by a set of meteo-oceanographic variables. The variables considered were salinity, sea surface temperature, photosynthetically active radiation, significant wave height and tidal range and were compiled from three different sources: remote sensing, reanalysis technique and in situ measurement. These variables were parameterized to represent average conditions (mean values), variability (standard deviation) and extreme events (minimum and maximum values). The results obtained in this study contribute to reinforce the EMBOS network approach and highlight the necessity of considering meteo-oceanographic variables in long-term assessments. The broad spatial distribution of pilot sites has allowed identification of latitudinal and longitudinal gradients manifested through species composition, diversity and dominance structure of intertidal macroalgae. These patterns follow a latitudinal gradient mainly explained by sea surface temperature, but also by photosynthetically active radiation, salinity and tidal range. Additionally, a longitudinal gradient was also detected and could be linked to wave height

    Geographic patterns of biodiversity in European coastal marine benthos

    Get PDF
    Within the COST action EMBOS (European Marine Biodiversity Observatory System) the degree and variation of the diversity and densities of soft-bottom communities from the lower intertidal or the shallow subtidal was measured at 28 marine sites along the European coastline (Baltic, Atlantic, Mediterranean) using jointly agreed and harmonized protocols, tools and indicators. The hypothesis tested was that the diversity for all taxonomic groups would decrease with increasing latitude. The EMBOS system delivered accurate and comparable data on the diversity and densities of the soft sediment macrozoobenthic community over a large-scale gradient along the European coastline. In contrast to general biogeographic theory, species diversity showed no linear relationship with latitude, yet a bell-shaped relation was found. The diversity and densities of benthos were mostly positively correlated with environmental factors such as temperature, salinity, mud and organic matter content in sediment, or wave height, and related with location characteristics such as system type (lagoons, estuaries, open coast) or stratum (intertidal, subtidal). For some relationships, a maximum (e.g. temperature from 15–20°C; mud content of sediment around 40%) or bimodal curve (e.g. salinity) was found. In lagoons the densities were twice higher than in other locations, and at open coasts the diversity was much lower than in other locations. We conclude that latitudinal trends and regional differences in diversity and densities are strongly influenced by, i.e. merely the result of, particular sets and ranges of environmental factors and location characteristics specific to certain areas, such as the Baltic, with typical salinity clines (favouring insects) and the Mediterranean, with higher temperatures (favouring crustaceans). Therefore, eventual trends with latitude are primarily indirect and so can be overcome by local variation of environmental factors
    corecore