42 research outputs found

    Rotationally Invariant Hamiltonians for Nuclear Spectra Based on Quantum Algebras

    Full text link
    The rotational invariance under the usual physical angular momentum of the SUq(2) Hamiltonian for the description of rotational nuclear spectra is explicitly proved and a connection of this Hamiltonian to the formalisms of Amal'sky and Harris is provided. In addition, a new Hamiltonian for rotational spectra is introduced, based on the construction of irreducible tensor operators (ITO) under SUq(2) and use of q-deformed tensor products and q-deformed Clebsch-Gordan coefficients. The rotational invariance of this SUq(2) ITO Hamiltonian under the usual physical angular momentum is explicitly proved, a simple closed expression for its energy spectrum (the ``hyperbolic tangent formula'') is introduced, and its connection to the Harris formalism is established. Numerical tests in a series of Th isotopes are provided.Comment: 34 pages, LaTe

    Deformed Harmonic Oscillators for Metal Clusters: Analytic Properties and Supershells

    Full text link
    The analytic properties of Nilsson's Modified Oscillator (MO), which was first introduced in nuclear structure, and of the recently introduced, based on quantum algebraic techniques, 3-dimensional q-deformed harmonic oscillator (3-dim q-HO) with Uq(3) > SOq(3) symmetry, which is known to reproduce correctly in terms of only one parameter the magic numbers of alkali clusters up to 1500 (the expected limit of validity for theories based on the filling of electronic shells), are considered. Exact expressions for the total energy of closed shells are determined and compared among them. Furthermore, the systematics of the appearance of supershells in the spectra of the two oscillators is considered, showing that the 3-dim q-HO correctly predicts the first supershell closure in alkali clusters without use of any extra parameter.Comment: 25 pages LaTeX plus 21 postscript figure

    q-Analogue of Am−1⊕An−1⊂Amn−1A_{m-1}\oplus A_{n-1}\subset A_{mn-1}

    Full text link
    A natural embedding Am−1⊕An−1⊂Amn−1A_{m-1}\oplus A_{n-1}\subset A_{mn-1} for the corresponding quantum algebras is constructed through the appropriate comultiplication on the generators of each of the Am−1A_{m-1} and An−1A_{n-1} algebras. The above embedding is proved in their qq-boson realization by means of the isomorphism between the Aq−\mathcal{A}_q^{-} (mn)∌⊗nAq−\sim {\otimes} ^n \mathcal{A}_q^{-}(m)∌⊗mAq−\sim {\otimes}^m\mathcal{A}_q^{-}(n) algebras.Comment: 11 pages, no figures. In memory of professor R. P. Rousse

    Multidimensional Isotropic and Anisotropic Q-Oscillator Models

    Full text link
    q-oscillator models are considered in two and higher dimensions and their symmetries are explored. New symmetries are found for both isotropic and anisotropic cases. Applications to the spectra of triatomic molecules and superdeformed nuclei are discussed.Comment: 12 Pages, LATEX, no figures, (Submitted to J. PHYS. A

    In memoriam two distinguished participants of the Bregenz Symmetries in Science Symposia: Marcos Moshinsky and Yurii Fedorovich Smirnov

    Full text link
    Some particular facets of the numerous works by Marcos Moshinsky and Yurii Fedorovich Smirnov are presented in these notes. The accent is put on some of the common interests of Yurii and Marcos in physics, theoretical chemistry, and mathematical physics. These notes also contain some more personal memories of Yurii Smirnov.Comment: Submitted for publication in Journal of Physics: Conference Serie

    Unified description of magic numbers of metal clusters in terms of the 3-dimensional q-deformed harmonic oscillator

    Full text link
    Magic numbers predicted by a 3-dimensional q-deformed harmonic oscillator with Uq(3)>SOq(3) symmetry are compared to experimental data for atomic clusters of alkali metals (Li, Na, K, Rb, Cs), noble metals (Cu, Ag, Au), divalent metals (Zn, Cd), and trivalent metals (Al, In), as well as to theoretical predictions of jellium models, Woods-Saxon and wine bottle potentials, and to the classification scheme using the 3n+l pseudo quantum number. In alkali metal clusters and noble metal clusters the 3-dimensional q-deformed harmonic oscillator correctly predicts all experimentally observed magic numbers up to 1500 (which is the expected limit of validity for theories based on the filling of electronic shells), while in addition it gives satisfactory results for the magic numbers of clusters of divalent metals and trivalent metals, thus indicating that Uq(3), which is a nonlinear extension of the U(3) symmetry of the spherical (3-dimensional isotropic) harmonic oscillator, is a good candidate for being the symmetry of systems of several metal clusters. The Taylor expansions of angular momentum dependent potentials approximately producing the same spectrum as the 3-dimensional q-deformed harmonic oscillator are found to be similar to the Taylor expansions of the symmetrized Woods-Saxon and wine-bottle symmetrized Woods-Saxon potentials, which are known to provide successful fits of the Ekardt potentials.Comment: 23 pages including 7 table

    Ground-gamma band mixing and odd-even staggering in heavy deformed nuclei

    Full text link
    It is proposed that the odd-even staggering (OES) in the Îł\gamma- bands of heavy deformed nuclei can be reasonably characterized by a discrete approximation of the fourth derivative of the odd-even energy difference as a function of angular momentum LL. This quantity exhibits a well developed staggering pattern (zigzagging behavior with alternating signs) in rare earth nuclei and actinides with long Îł\gamma- bands (L≄10L\geq 10). It is shown that the OES can be interpreted reasonably as the result of the interaction of the Îł\gamma band with the ground band in the framework of a Vector Boson Model with SU(3) dynamical symmetry. The model energy expression reproduces successfully the staggering pattern in all considered nuclei up to L=12−13L=12-13. The general behavior of the OES effect in rotational regions is studied in terms of the ground--Îł\gamma band-mixing interaction, showing that strong OES effect occurs in regions with strong ground--Îł\gamma band-mixing interaction. The approach used allows a detailed comparison of the OES in Îł\gamma bands with the other kinds of staggering effects in nuclei and diatomic molecules.Comment: 25 pages, 11 postscript figure
    corecore