151 research outputs found
Inversionless light amplification and optical switching controlled by state-dependent alignment of molecules
We propose a method to achieve amplification without population inversion by
anisotropic molecules whose orientation by an external electric field is
state-dependent. It is based on decoupling of the lower-state molecules from
the resonant light while the excited ones remain emitting. The suitable class
of molecules is discussed, the equation for the gain factor is derived, and the
magnitude of the inversionless amplification is estimated for the typical
experimental conditions. Such switching of the sample from absorbing to
amplifying via transparent state is shown to be possible both with the aid of
dc and ac control electric fields.Comment: AMS-LaTeX v1.2, 4 pages with 4 figure
Inversionless gain in a three-level system driven by a strong field and collisions
Inversionless gain in a three-level system driven by a strong external field
and by collisions with a buffer gas is investigated. The mechanism of
populating of the upper laser level contributed by the collision transfer as
well as by relaxation caused by a buffer gas is discussed in detail. Explicit
formulae for analysis of optimal conditions are derived. The mechanism
developed here for the incoherent pump could be generalized to other systems.Comment: RevTeX, 9 pages, 4 eps figure
Experimental implementation of a four-level N-type scheme for the observation of Electromagnetically Induced Transparency
A nondegenerate four-level N-type scheme was experimentally implemented to
observe electromagnetically induced transparency (EIT) at the Rb D
line. Radiations of two independent external-cavity semiconductor lasers were
used in the experiment, the current of one of them being modulated at a
frequency equal to the hyperfine-splitting frequency of the excited 5P
level. In this case, apart from the main EIT dip corresponding to the
two-photon Raman resonance in a three-level -scheme, additional dips
detuned from the main dip by a frequency equal to the frequency of the HF
generator were observed in the absorption spectrum. These dips were due to an
increase in the medium transparency at frequencies corresponding to the
three-photon Raman resonances in four-level N-type schemes. The resonance
shapes are analyzed as functions of generator frequency and magnetic field.Comment: 3 pages, 2 figure
Autler - Townes doublet probed by strong field
This paper deals with the Autler - Townes doublet structure. Applied driving
and probing laser fields can have arbitrary intensities. The explanation is
given of the broadening of doublet components with the growth of probing field
intensity, which was observed in experiment. The effects of Doppler averaging
are discussed.Comment: 12 pages, RevTeX, 5 figures in 9 file
Spatial evolution of short pulses under coherent population trapping
Spatial and temporal evolution is studied of two powerful short laser pulses
having different wavelengths and interacting with a dense three-level
Lambda-type optical medium under coherent population trapping. A general case
of unequal oscillator strengths of the transitions is considered. Durations of
the probe pulse and the coupling pulse () are assumed to be
shorter than any of the relevant atomic relaxation times. We propose analytical
and numerical solutions of a self-consistent set of coupled Schr\"{o}dinger
equations and reduced wave equations in the adiabatic limit with the account of
the first non-adiabatic correction. The adiabaticity criterion is also
discussed with the account of the pulse propagation. The dynamics of
propagation is found to be strongly dependent on the ratio of the transition
oscillator strengths. It is shown that envelopes of the pulses slightly change
throughout the medium length at the initial stage of propagation. This distance
can be large compared to the one-photon resonant absorption length. Eventually,
the probe pulse is completely reemitted into the coupling pulse during
propagation. The effect of localization of the atomic coherence has been
observed similar to the one predicted by Fleischhauer and Lukin (PRL, {\bf 84},
5094 (2000).Comment: 16 pages revtex style, 7 EPS figures, accepted to Physical Review
Boundary-layer turbulence as a kangaroo process
A nonlocal mixing-length theory of turbulence transport by finite size eddies is developed by means of a novel evaluation of the Reynolds stress. The analysis involves the contruct of a sample path space and a stochastic closure hypothesis. The simplifying property of exhange (strong eddies) is satisfied by an analytical sampling rate model. A nonlinear scaling relation maps the path space onto the semi-infinite boundary layer. The underlying near-wall behavior of fluctuating velocities perfectly agrees with recent direct numerical simulations. The resulting integro-differential equation for the mixing of scalar densities represents fully developed boundary-layer turbulence as a nondiffusive (Kubo-Anderson or kangaroo) type of stochastic process. The model involves a scaling exponent (with → in the diffusion limit). For the (partly analytical) solution for the mean velocity profile, excellent agreement with the experimental data yields 0.58. © 1995 The American Physical Society
- …