18,359 research outputs found
Study of the characteristics of seismic signals generated by natural and cultural phenomena
Seismic data recorded at the Tonto Forest Seismological Observatory in Arizona and the Uinta Basin Seismological Observatory in Utah were used to compare the frequency of occurrence, severity, and spectral content of ground motions resulting from earthquakes, and other natural and man-made sources with the motions generated by sonic booms. A search of data recorded at the two observatories yielded a classification of over 180,000 earthquake phase arrivals on the basis of frequency of occurrence versus maximum ground velocity. The majority of the large ground velocities were produced by seismic surface waves from moderate to large earthquakes in the western United States, and particularly along the Pacific Coast of the United States and northern Mexico. A visual analysis of raw film seismogram data over a 3-year period indicates that local and regional seismic events, including quarry blasts, are frequent in occurrence, but do not produce ground motions at the observatories comparable to either the large western United States earthquakes or to sonic booms. Seismic data from the Nevada Test Site nuclear blasts were used to derive magnitude-distance-sonic boom overpressure relations
Origins of elastic properties in ordered nanocomposites
We predict a diblock copolymer melt in the lamellar phase with added
spherical nanoparticles that have an affinity for one block to have a lower
tensile modulus than a pure diblock copolymer system. This weakening is due to
the swelling of the lamellar domain by nanoparticles and the displacement of
polymer by elastically inert fillers. Despite the overall decrease in the
tensile modulus of a polydomain sample, the shear modulus for a single domain
increases dramatically
Gas stripping in galaxy groups - the case of the starburst spiral NGC 2276
Ram pressure stripping of galactic gas is generally assumed to be inefficient
in galaxy groups due to the relatively low density of the intragroup medium and
the small velocity dispersions of groups. To test this assumption, we obtained
Chandra X-ray data of the starbursting spiral NGC 2276 in the NGC 2300 group of
galaxies, a candidate for a strong galaxy interaction with hot intragroup gas.
The data reveal a shock-like feature along the western edge of the galaxy and a
low-surface-brightness tail extending to the east, similar to the morphology
seen in other wavebands. Spatially resolved spectroscopy shows that the data
are consistent with intragroup gas being pressurized at the leading western
edge of NGC 2276 due to the galaxy moving supersonically through the intragroup
medium at a velocity ~850 km/s. Detailed modelling of the gravitational
potential of NGC 2276 shows that the resulting ram-pressure could significantly
affect the morphology of the outer gas disc but is probably insufficient to
strip large amounts of cold gas from the disc. We estimate the mass loss rates
due to turbulent viscous stripping and starburst outflows being swept back by
ram pressure, showing that both mechanisms could plausibly explain the presence
of the X-ray tail. Comparison to existing HI measurements shows that most of
the gas escaping the galaxy is in a hot phase. With a total mass loss rate of
roughly 5 M_Sun/yr, the galaxy could be losing its entire present HI supply
within a Gyr. This demonstrates that the removal of galactic gas through
interactions with a hot intragroup medium can occur rapidly enough to transform
the morphology of galaxies in groups. Implications of this for galaxy evolution
in groups and clusters are briefly discussed.Comment: 16 pages, 8 figures, accepted for publication in MNRA
Transplacental transmission of field and rescued strains of BTV-2 and BTV-8 in experimentally infected sheep
Transplacental transmission of bluetongue virus has been shown previously for the North European strain of serotype 8 (BTV-8) and for tissue culture or chicken egg-adapted vaccine strains but not for field strains of other serotypes. In this study, pregnant ewes (6 per group) were inoculated with either field or rescued strains of BTV-2 and BTV-8 in order to determine the ability of these viruses to cross the placental barrier. The field BTV-2 and BTV-8 strains was passaged once in Culicoides KC cells and once in mammalian cells. All virus inoculated sheep became infected and seroconverted against the different BTV strains used in this study. BTV RNA was detectable in the blood of all but two ewes for over 28Â days but infectious virus could only be detected in the blood for a much shorter period. Interestingly, transplacental transmission of BTV-2 (both field and rescued strains) was demonstrated at high efficiency (6 out of 13 lambs born to BTV-2 infected ewes) while only 1 lamb of 12 born to BTV-8 infected ewes showed evidence of in utero infection. In addition, evidence for horizontal transmission of BTV-2 between ewes was observed. As expected, the parental BTV-2 and BTV-8 viruses and the viruses rescued by reverse genetics showed very similar properties to each other. This study showed, for the first time, that transplacental transmission of BTV-2, which had been minimally passaged in cell culture, can occur; hence such transmission might be more frequent than previously thought
Realizing time crystals in discrete quantum few-body systems
The exotic phenomenon of time translation symmetry breaking under periodic
driving - the time crystal - has been shown to occur in many-body systems even
in clean setups where disorder is absent. In this work, we propose the
realization of time-crystals in few-body systems, both in the context of
trapped cold atoms with strong interactions and of a circuit of superconducting
qubits. We show how these two models can be treated in a fairly similar way by
adopting an effective spin chain description, to which we apply a simple
driving protocol. We focus on the response of the magnetization in the presence
of imperfect pulses and interactions, and show how the results can be
interpreted, in the cold atomic case, in the context of experiments with
trapped bosons and fermions. Furthermore, we provide a set of realistic
parameters for the implementation of the superconducting circuit.Comment: 6 pages, 4 figure
Higgs decays to two leptons and a photon beyond leading order in the SMEFT
We present the three-body decay of the Higgs boson into two leptons and a
photon to dimension-eight in the Standard Model Effective Field Theory (SMEFT).
In order to obtain this result we interfere the full one-loop Standard Model
result with the tree-level result in the SMEFT. This is the first calculation
of the partial width of the Higgs boson into two leptons and a photon in the
SMEFT to incorporate the full one-loop dependence for the Standard Model as
well as the full tree level dimension-eight dependence in the SMEFT. We find
that this channel can aid in distinguishing strongly interacting and weakly
interacting UV completions of the SMEFT under standard assumptions. We also
find that this channel presents the opportunity to distinguish different
operator Classes within the SMEFT, potentially including contact
operators which are first generated only at
dimension-eight in the SMEFT.Comment: 22 pages excl Appendices, 4 Tables, 7 Figure
Study of high voltage solar array configurations with integrated power control electronics
Solar array electrical configurations for voltage regulatio
- …