363 research outputs found

    Effect of Cluster Formation on Isospin Asymmetry in the Liquid-Gas Phase Transition Region

    Full text link
    Nuclear matter within the liquid-gas phase transition region is investigated in a mean-field two-component Fermi-gas model. Following largely analytic considerations, it is shown that: (1) Due to density dependence of asymmetry energy, some of the neutron excess from the high-density phase could be expelled into the low-density region. (2) Formation of clusters in the gas phase tends to counteract this trend, making the gas phase more liquid-like and reducing the asymmetry in the gas phase. Flow of asymmetry between the spectator and midrapidity region in reactions is discussed and a possible inversion of the flow direction is indicated.Comment: 9 pages,3 figures, RevTe

    Phase mapping of aging process in InN nanostructures: oxygen incorporation and the role of the zincblende phase

    Full text link
    Uncapped InN nanostructures undergo a deleterious natural aging process at ambient conditions by oxygen incorporation. The phases involved in this process and their localization is mapped by Transmission Electron Microscopy (TEM) related techniques. The parent wurtzite InN (InN-w) phase disappears from the surface and gradually forms a highly textured cubic layer that completely wraps up a InN-w nucleus which still remains from original single-crystalline quantum dots. The good reticular relationships between the different crystals generate low misfit strains and explain the apparent easiness for phase transformations at room temperature and pressure conditions, but also disable the classical methods to identify phases and grains from TEM images. The application of the geometrical phase algorithm in order to form numerical moire mappings, and RGB multilayered image reconstructions allows to discern among the different phases and grains formed inside these nanostructures. Samples aged for shorter times reveal the presence of metastable InN:O zincblende (zb) volumes, which acts as the intermediate phase between the initial InN-w and the most stable cubic In2O3 end phase. These cubic phases are highly twinned with a proportion of 50:50 between both orientations. We suggest that the existence of the intermediate InN:O-zb phase should be seriously considered to understand the reason of the widely scattered reported fundamental properties of thought to be InN-w, as its bandgap or superconductivity.Comment: 18 pages 7 figure

    First-principles study of the structural energetics of PdTi and PtTi

    Full text link
    The structural energetics of PdTi and PtTi have been studied using first-principles density-functional theory with pseudopotentials and a plane-wave basis. We predict that in both materials, the experimentally reported orthorhombic B19B19 phase will undergo a low-temperature phase transition to a monoclinic B19B19' ground state. Within a soft-mode framework, we relate the B19B19 structure to the cubic B2B2 structure, observed at high temperature, and the B19B19' structure to B19B19 via phonon modes strongly coupled to strain. In contrast to NiTi, the B19B19 structure is extremely close to hcp. We draw on the analogy to the bcc-hcp transition to suggest likely transition mechanisms in the present case.Comment: 8 pages 5 figure

    Transauricular nerve stimulation in acute ischaemic stroke requiring mechanical thrombectomy: Protocol for a phase 2A, proof-of-concept, sham-controlled randomised trial.

    Get PDF
    BACKGROUND: Labile blood pressure after acute ischaemic stroke requiring mechanical thrombectomy is independently associated with poor patient outcomes. OBJECTIVES: This study protocol describes is designed to determine whether transauricular nerve stimulation, improves baroreflex sensitivity, reduces blood pressure variability in the first 24 hours after acute ischaemic stroke requiring mechanical thrombectomy. DESIGN: PHASE 2A, PROOF-OF-CONCEPT, SHAM-CONTROLLED RANDOMISED TRIAL: Methods and Analysis: 36 individuals undergoing mechanical thrombectomy for acute ischaemic stroke with established hypertension aged >18 years will be randomly allocated to receive bilateral active or sham transauricular nerve stimulation for the duration of the mechanical thrombectomy procedure (AffeX-CT/001 investigational device). The intervention will be repeated for 1h the morning following the mechanical thrombectomy. Non-invasive blood pressure will be measured ≥2h for 24h after mechanical thrombectomy. Holter electrocardiographic monitoring will be recorded during transauricular nerve stimulation. Participants, clinicians and investigators will be masked to treatment allocations. The primary outcome will be the coefficient of variation of systolic blood pressure. Secondary outcomes include additional estimates of blood pressure variability and time/frequency-domain measures of autonomic cardiac modulation An adjusted sample size of 36 patients is required to have a 90% chance of detecting, as significant at the 5% level, a difference in the coefficient of variation in systolic blood pressure of 5±4mmHg between sham and active stimulation [assuming 5% non-compliance rate in each group]. Ethics: confirmed on 16 March 2023 by HRA and Health and Care Research Wales ethics committee (reference 23/WA/0013). DISCUSSION: This study will provide proof-of-concept data that examines whether non-invasive autonomic neuromodulation can be used to favourably modify blood pressure and autonomic control after acute ischaemic stroke requiring mechanical thrombectomy. TRIAL REGISTRATION: Trial registration number: NCT05417009

    Lattice-switch Monte Carlo: the fcc-bcc problem

    Get PDF
    Lattice-switch Monte Carlo is an efficient method for calculating the free energy difference between two solid phases, or a solid and a fluid phase. Here, we provide a brief introduction to the method, and list its applications since its inception. We then describe a lattice switch for the fcc and bcc phases based on the Bain orientation relationship. Finally, we present preliminary results regarding our application of the method to the fcc and bcc phases in the Lennard-Jones system. Our initial calculations reveal that the bcc phase is unstable, quickly degenerating into some as yet undetermined metastable solid phase. This renders conventional lattice-switch Monte Carlo intractable for this phase. Possible solutions to this problem are discussed

    Fermi surface induced lattice distortion in NbTe2_2

    Full text link
    The origin of the monoclinic distortion and domain formation in the quasi two-dimensional layer compound NbTe2_2 is investigated. Angle-resolved photoemission shows that the Fermi surface is pseudogapped over large portions of the Brillouin zone. Ab initio calculation of the electron and phonon bandstructure as well as the static RPA susceptibility lead us to conclude that Fermi surface nesting and electron-phonon coupling play a key role in the lowering of the crystal symmetry and in the formation of the charge density wave phase

    Defect and solute properties in dilute Fe-Cr-Ni austenitic alloys from first principles

    Full text link
    We present results of an extensive set of first-principles density functional theory calculations of point defect formation, binding and clustering energies in austenitic Fe with dilute concentrations of Cr and Ni solutes.Comment: 24 pages, 10 figures, published in Phys. Rev.
    corecore