690 research outputs found

    Angular velocity distribution of a granular planar rotator in a thermalized bath

    Full text link
    The kinetics of a granular planar rotator with a fixed center undergoing inelastic collisions with bath particles is analyzed both numerically and analytically by means of the Boltzmann equation. The angular velocity distribution evolves from quasi-gaussian in the Brownian limit to an algebraic decay in the limit of an infinitely light particle. In addition, we compare this model with a planar rotator with a free center. We propose experimental tests that might confirm the predicted behaviors.Comment: 10 Pages, 9 Figure

    The topographical anatomy and arterial supply of the thyroid and parathyroid glands in the budgerigar (Melopsittacus undulatus)

    Get PDF
    This investigation was conducted on 30 adult, male and female budgerigars. The thyroid and parathyroid glands adhere to each other on both sides of the body and are surrounded by a common connective tissue capsule. The glandular “cluster” on the right side was cranial and dorsal in relation to that on the left. The thyroid glands were most often supplied with blood by the following glandular arteries: the caudal thyroid (1–4), the cranial thyroid (1–3) and the middle thyroid (1 or 2). The caudal thyroid generally branched from the oesophagotracheobronchial artery. On the right side the cranial and middle thyroid arteries most commonly originated from the ascending oesophageal artery, whereas on the left side they separated from the common trunk of the comes nervi vagi and the ascending oesophageal artery. On each side of the body a single gland was supplied with blood by between 1 and 6 arteries (in most cases by 2–3). On average, the number of thyroid arteries on the right side was statistically significantly higher than the number on the left. The parathyroid artery (1–2) most commonly originated from the caudal thyroid artery, generally separating from this artery under the fibrosus capsule of the glandular “cluster”

    Field induced stationary state for an accelerated tracer in a bath

    Full text link
    Our interest goes to the behavior of a tracer particle, accelerated by a constant and uniform external field, when the energy injected by the field is redistributed through collision to a bath of unaccelerated particles. A non equilibrium steady state is thereby reached. Solutions of a generalized Boltzmann-Lorentz equation are analyzed analytically, in a versatile framework that embeds the majority of tracer-bath interactions discussed in the literature. These results --mostly derived for a one dimensional system-- are successfully confronted to those of three independent numerical simulation methods: a direct iterative solution, Gillespie algorithm, and the Direct Simulation Monte Carlo technique. We work out the diffusion properties as well as the velocity tails: large v, and either large -v, or v in the vicinity of its lower cutoff whenever the velocity distribution is bounded from below. Particular emphasis is put on the cold bath limit, with scatterers at rest, which plays a special role in our model.Comment: 20 pages, 6 figures v3:minor corrections in sec.III and added reference

    On-Orbit Validation of a Framework for Spacecraft-Initiated Communication Service Requests with NASA's SCaN Testbed

    Get PDF
    We design, analyze, and experimentally validate a framework for demand-based allocation of high-performance space communication service in which the user spacecraft itself initiates a request for service. Leveraging machine-to-machine communications, the automated process has potential to improve the responsiveness and efficiency of space network operations. We propose an augmented ground station architecture in which a hemispherical-pattern antenna allows for reception of service requests sent from any user spacecraft within view. A suite of ground-based automation software acts upon these direct-to-Earth requests and allocates access to high-performance service through a ground station or relay satellite in response to immediate user demand. A software-defined radio transceiver, optimized for reception of weak signals from the helical antenna, is presented. Design and testing of signal processing equipment and a software framework to handle service requests is discussed. Preliminary results from on-orbit demonstrations with a testbed onboard the International Space Station are presented to verify feasibility of the concept

    On the maximal Lp-Lq regularity of solutions to a general linear parabolic system

    Get PDF
    We show the existence of solution in the maximal regularity framework to a class of symmetric parabolic problems on a uniformly domain in . Our approach consist in showing - boundedness of families of solution operators to corresponding resolvent problems first in the whole space, then in half-space, perturbed half-space and finally, using localization arguments, on the domain. Assuming additionally boundedness of the domain we also show exponential decay of the solution. In particular, our approach does not require assuming a priori the uniform Lopatinskii - Shapiro condition

    Hybrid LTA vehicle controllability as affected by buoyancy ratio

    Get PDF
    The zero and low speed controllability of heavy lift airships under various wind conditions as affected by the buoyancy ratio are investigated. A series of three hybrid LTA vehicls were examined, each having a dynamic thrust system comprised of four H-34 helicopters, but with buoyant envelopes of different volumes (and hence buoyancies), and with varying percentage of helium inflation and varying useful loads (hence gross weights). Buoyancy ratio, B, was thus examined varying from approximately 0.44 to 1.39. For values of B greater than 1.0, the dynamic thrusters must supply negative thrust (i.e. downward)

    Application of the Gillespie algorithm to a granular intruder particle

    Full text link
    We show how the Gillespie algorithm, originally developed to describe coupled chemical reactions, can be used to perform numerical simulations of a granular intruder particle colliding with thermalized bath particles. The algorithm generates a sequence of collision ``events'' separated by variable time intervals. As input, it requires the position-dependent flux of bath particles at each point on the surface of the intruder particle. We validate the method by applying it to a one-dimensional system for which the exact solution of the homogeneous Boltzmann equation is known and investigate the case where the bath particle velocity distribution has algebraic tails. We also present an application to a granular needle in bath of point particles where we demonstrate the presence of correlations between the translational and rotational degrees of freedom of the intruder particle. The relationship between the Gillespie algorithm and the commonly used Direct Simulation Monte Carlo (DSMC) method is also discussed.Comment: 13 pages, 8 figures, to be published in J. Phys. A Math. Ge

    Earth-Facing Antenna Characterization in Complex Ground Plane/Multipath Rich Environment

    Get PDF
    The Space Communications and Navigation (SCAN) Testbed was a Software Defined Radio (SDR)-based payload launched to the International Space Station (ISS) in July of 2012. The purpose of the SCAN Testbed payload was to investigate the applicability of SDRs to NASA space missions in an operational environment, which means that a proper model for system performance in said operational space environment is a necessary condition. The SCAN Testbed has line-of-sight connections to various ground stations with its S-Band Earth-facing Near-Earth-Network Low Gain Antenna (NEN-LGA). Any previous efforts to characterize the NEN-LGA proved difficult, therefore, the NASA Glenn Research Center built its own S-Band ground station, which became operational in 2015, and has been used successfully to characterize the NEN-LGA's in-situ pattern measurements. This methodology allows for a more realistic characterization of the antenna performance, where the pattern oscillation induced by the complex ISS ground plane, as well as shadowing effects due to ISS structural blockage are included into the final performance model. This paper describes the challenges of characterizing an antenna pattern in this environment. It will also discuss the data processing, present the final antenna pattern measurements and derived model, as well as discuss various lessons learne

    Earth-Facing Antenna Characterization in a Complex Ground Plane/Multipath Rich Environment

    Get PDF
    The Space Communications and Navigation (SCAN) Testbed was a Software Defined Radio (SDR)-based payload launched to the International Space Station (ISS) in July of 2012. The purpose of the SCAN Testbed payload was to investigate the applicability of SDRs to NASA space missions in an operational space environment, which means that a proper model for system performance in said operational space environment is a necessary condition. The SCAN Testbed has line-of-sight connections to various ground stations with its S-Band Earth-facing Near-Earth Network Low Gain Antenna (NEN-LGA). Any previous efforts to characterize the NEN-LGA proved difficult, therefore, the NASA Glenn Research Center built its own S-Band ground station, which became operational in 2015, and has been successfully used to characterize the NEN-LGAs in-situ pattern measurements. This methodology allows for a more realistic characterization of the antenna performance, where the pattern oscillation induced by the complex ISS ground plane, as well as shadowing effects due to ISS structural blockage are included into the final performance model. This paper describes the challenges of characterizing an antenna pattern in this environment. It will also discuss the data processing, present the final antenna pattern measurements and derived model, as well as discuss various lessons learned

    Potential Applications of Active Antenna Technologies for Emerging NASA Space Communications Scenarios

    Get PDF
    AbstractThe National Aeronautics and Space Administration (NASA) is presently embarking on the implementation of far-reaching changes within the framework of both space and aeronautics communications architectures. For example, near earth relays are looking to transition from the traditional few large geostationary satellites to satellite constellations consisting of thousands of small low earth orbiting satellites while lunar space communications will require the need to relay data from many assets distributed on the lunar surface back to earth. Furthermore, within the aeronautics realm, satellite communications for beyond line of sight (BLOS) links are being investigated in tandem with the proliferation of unmanned aerial systems (UAS) within the urban air mobility (UAM) environment. In all of these scenarios, future communications architectures will demand the need to connect and quickly transition between many nodes for large data volume transport. As such, NASA Glenn Research Center (GRC) has been heavily investigating the development of low cost phased array technologies that can readily address these various scenario conditions. In particular, GRC is presently exploring 5G-based beamformer technologies to leverage commercial timescale and volume production cycles which have heretofore not existed within the frequency allocations utilized for NASA applications. In this paper, an overview of the potential future applications of phased arrays being envisioned by NASA are discussed, along with technology feasibility demonstrations being conducted by GRC implementing low cost, 5G based beamformer technologies
    corecore