3 research outputs found

    Chimeric vapA/groEL2 DNA vaccines enhance clearance of Rhodococcus equi in aerosol challenged C3H/He mice

    No full text
    Rhodococcus equi remains a significant bacterial pathogen, causing severe pyogranulomatous pneumonia in foals aged 1-3 months. There is no effective vaccine currently available for the prevention of R. equi pneumonia. DNA vaccines are known to offer specific advantages over conventional vaccines. The aim of this study was to demonstrate efficacy of our recombinant DNA vaccine candidates, namely pcDNA3-Re1, pcDNA3-Re3 and pcDNA3-Re5 by combining a heat shock protein GroEL2 to a virulence-associated protein A (VapA) from R. equi to protect C3H/He mice against the R. equi infection. VapA was shown to be strongly recognised by sera from pneumonic foals. All vaccines elicited at least a doubling of the IgG2a/IgG1 ratio in comparison to the controls, indicating a bias to the Th1 response, which is postulated to be crucial for bacterial clearance and protective immunity against intracellular pathogens including R. equi. In addition, the immunised mice showed a significant reduction in R. equi in their lungs at 7 days after the aerosol challenge in comparison to PBS treated mice. However, examination of lung pathology 14 days after the challenge showed no gross differences in pathological changes between the unvaccinated and vaccinated animals. The lack of significant pathological changes suggests that the precise level of protection against R. equi pneumonia in the murine model of infection may not represent a true effectiveness of the potential vaccine candidates, indicating the mouse may not be the ideal non-equine model for vaccine studies and (or) the incomplete immunogenic antigen of vapA-based DNA vaccine constructs that mount an inadequate cell-mediated immune response against the R. equi infection.Tongted Phumoonna, Mary D. Barton, Thiru Vanniasinkam and Michael W. Heuzenroede

    Linear B-cell epitope mapping using enzyme-linked immunosorbent assay for libraries of overlapping synthetic peptides

    No full text
    The aim of this chapter is to provide a strategy for mapping linear antibody epitopes of protein antigens in order to discover candidates for vaccines or diagnostic tests. A set of overlapping peptides was designed and synthesised based upon a known amino acid sequence of the target protein, virulence-associated protein A (VapA) of the bacterium Rhodococcus equi, an important pulmonary pathogen in foals. The peptides were biotinylated and used in an ELISA to screen immune sera from foals. These biotinylated peptides were coated directly onto micro titre plates that had been pre-coated with NeutrAvidin™. A linear B-cell epitope was identified by a universal recognition of sera to the synthetic peptides which corresponds to a particular fragment of the VapA protein.Michael W. Heuzenroeder, Mary D. Barton, Thiru Vanniasinkam and Tongted Phumoonn
    corecore