536 research outputs found

    Bethe Ansatz solutions for Temperley-Lieb Quantum Spin Chains

    Full text link
    We solve the spectrum of quantum spin chains based on representations of the Temperley-Lieb algebra associated with the quantum groups Uq(Xn){\cal U}% _{q}(X_{n}) for Xn=A1,X_{n}=A_{1}, Bn,B_{n}, CnC_{n} and DnD_{n}. The tool is a modified version of the coordinate Bethe Ansatz through a suitable choice of the Bethe states which give to all models the same status relative to their diagonalization. All these models have equivalent spectra up to degeneracies and the spectra of the lower dimensional representations are contained in the higher-dimensional ones. Periodic boundary conditions, free boundary conditions and closed non-local boundary conditions are considered. Periodic boundary conditions, unlike free boundary conditions, break quantum group invariance. For closed non-local cases the models are quantum group invariant as well as periodic in a certain sense.Comment: 28 pages, plain LaTex, no figures, to appear in Int. J. Mod. Phys.

    Quantum Loop Subalgebra and Eigenvectors of the Superintegrable Chiral Potts Transfer Matrices

    Full text link
    It has been shown in earlier works that for Q=0 and L a multiple of N, the ground state sector eigenspace of the superintegrable tau_2(t_q) model is highly degenerate and is generated by a quantum loop algebra L(sl_2). Furthermore, this loop algebra can be decomposed into r=(N-1)L/N simple sl_2 algebras. For Q not equal 0, we shall show here that the corresponding eigenspace of tau_2(t_q) is still highly degenerate, but splits into two spaces, each containing 2^{r-1} independent eigenvectors. The generators for the sl_2 subalgebras, and also for the quantum loop subalgebra, are given generalizing those in the Q=0 case. However, the Serre relations for the generators of the loop subalgebra are only proven for some states, tested on small systems and conjectured otherwise. Assuming their validity we construct the eigenvectors of the Q not equal 0 ground state sectors for the transfer matrix of the superintegrable chiral Potts model.Comment: LaTeX 2E document, using iopart.cls with iopams packages. 28 pages, uses eufb10 and eurm10 fonts. Typeset twice! Version 2: Details added, improvements and minor corrections made, erratum to paper 2 included. Version 3: Small paragraph added in introductio

    p-species integrable reaction-diffusion processes

    Full text link
    We consider a process in which there are p-species of particles, i.e. A_1,A_2,...,A_p, on an infinite one-dimensional lattice. Each particle AiA_i can diffuse to its right neighboring site with rate DiD_i, if this site is not already occupied. Also they have the exchange interaction A_j+A_i --> A_i+A_j with rate rij.r_{ij}. We study the range of parameters (interactions) for which the model is integrable. The wavefunctions of this multi--parameter family of integrable models are found. We also extend the 2--species model to the case in which the particles are able to diffuse to their right or left neighboring sites.Comment: 16 pages, LaTe

    The anisotropic XY model on the inhomogeneous periodic chain

    Full text link
    The static and dynamic properties of the anisotropic XY-model (s=1/2)(s=1/2) on the inhomogeneous periodic chain, composed of NN cells with nn different exchange interactions and magnetic moments, in a transverse field h,h, are determined exactly at arbitrary temperatures. The properties are obtained by introducing the Jordan-Wigner fermionization and by reducing the problem to a diagonalization of a finite matrix of nthnth order. The quantum transitions are determined exactly by analyzing, as a function of the field, the induced magnetization 1/n\sum_{m=1}^{n}\mu_{m}\left (jj denotes the cell, mm the site within the cell, μm\mu_{m} the magnetic moment at site mm within the cell) and the spontaneous magnetization 1/n∑m=1n<Sj,mx,>1/n\sum_{m=1}^{n}\left< S_{j,m}^{x},\right> which is obtained from the correlations <Sj,mxSj+r,mx>\left< S_{j,m}^{x}S_{j+r,m}^{x}\right> for large spin separations. These results, which are obtained for infinite chains, correspond to an extension of the ones obtained by Tong and Zhong(\textit{Physica B} \textbf{304,}91 (2001)). The dynamic correlations, <Sj,mz(t)Sj′,m′z(0)>\left< S_{j,m}^{z}(t)S_{j^{\prime},m^{\prime}}^{z}(0)\right>, and the dynamic susceptibility, χqzz(ω),\chi_{q}^{zz}(\omega), are also obtained at arbitrary temperatures. Explicit results are presented in the limit T=0, where the critical behaviour occurs, for the static susceptibility χqzz(0)\chi_{q}^{zz}(0) as a function of the transverse field hh, and for the frequency dependency of dynamic susceptibility χqzz(ω)\chi_{q}^{zz}(\omega).Comment: 33 pages, 13 figures, 01 table. Revised version (minor corrections) accepted for publiction in Phys. Rev.

    Dynamic properties of the spin-1/2 XY chain with three-site interactions

    Full text link
    We consider a spin-1/2 XY chain in a transverse (z) field with multi-site interactions. The additional terms introduced into the Hamiltonian involve products of spin components related to three adjacent sites. A Jordan-Wigner transformation leads to a simple bilinear Fermi form for the resulting Hamiltonian and hence the spin model admits a rigorous analysis. We point out the close relationships between several variants of the model which were discussed separately in previous studies. The ground-state phases (ferromagnet and two kinds of spin liquid) of the model are reflected in the dynamic structure factors of the spin chains, which are the main focus in this study. First we consider the zz dynamic structure factor reporting for this quantity a closed-form expression and analyzing the properties of the two-fermion (particle-hole) excitation continuum which governs the dynamics of transverse spin component fluctuations and of some other local operator fluctuations. Then we examine the xx dynamic structure factor which is governed by many-fermion excitations, reporting both analytical and numerical results. We discuss some easily recognized features of the dynamic structure factors which are signatures for the presence of the three-site interactions.Comment: 28 pages, 10 fugure

    Eigenvectors in the Superintegrable Model I: sl_2 Generators

    Full text link
    In order to calculate correlation functions of the chiral Potts model, one only needs to study the eigenvectors of the superintegrable model. Here we start this study by looking for eigenvectors of the transfer matrix of the periodic tau_2(t)model which commutes with the chiral Potts transfer matrix. We show that the degeneracy of the eigenspace of tau_2(t) in the Q=0 sector is 2^r, with r=(N-1)L/N when the size of the transfer matrix L is a multiple of N. We introduce chiral Potts model operators, different from the more commonly used generators of quantum group U-tilde_q(sl-hat(2)). From these we can form the generators of a loop algebra L(sl(2)). For this algebra, we then use the roots of the Drinfeld polynomial to give new explicit expressions for the generators representing the loop algebra as the direct sum of r copies of the simple algebra sl(2).Comment: LaTeX 2E document, 11 pages, 1 eps figure, using iopart.cls with graphicx and iopams packages. v2: Appended text to title, added acknowledgments and made several minor corrections v3: Added reference, eliminated ambiguity, corrected a few misprint

    The Onsager Algebra Symmetry of Ï„(j)\tau^{(j)}-matrices in the Superintegrable Chiral Potts Model

    Full text link
    We demonstrate that the Ï„(j)\tau^{(j)}-matrices in the superintegrable chiral Potts model possess the Onsager algebra symmetry for their degenerate eigenvalues. The Fabricius-McCoy comparison of functional relations of the eight-vertex model for roots of unity and the superintegrable chiral Potts model has been carefully analyzed by identifying equivalent terms in the corresponding equations, by which we extract the conjectured relation of QQ-operators and all fusion matrices in the eight-vertex model corresponding to the TT^T\hat{T}-relation in the chiral Potts model.Comment: Latex 21 pages; Typos added, References update

    Supersymmetric t-J Gaudin Models and KZ Equations

    Full text link
    Supersymmetric t-J Gaudin models with both periodic and open boundary conditions are constructed and diagonalized by means of the algebraic Bethe ansatz method. Off-shell Bethe ansatz equations of the Gaudin systems are derived, and used to construct and solve the KZ equations associated with sl(2∣1)(1)sl(2|1)^{(1)} superalgebra.Comment: LaTex 21 page

    Eigenvectors in the Superintegrable Model II: Ground State Sector

    Full text link
    In 1993, Baxter gave 2mQ2^{m_Q} eigenvalues of the transfer matrix of the NN-state superintegrable chiral Potts model with spin-translation quantum number QQ, where mQ=⌊(NL−L−Q)/N⌋m_Q=\lfloor(NL-L-Q)/N\rfloor. In our previous paper we studied the Q=0 ground state sector, when the size LL of the transfer matrix is chosen to be a multiple of NN. It was shown that the corresponding τ2\tau_2 matrix has a degenerate eigenspace generated by the generators of r=m0r=m_0 simple sl2sl_2 algebras. These results enable us to express the transfer matrix in the subspace in terms of these generators Em±E_m^{\pm} and HmH_m for m=1,...,rm=1,...,r. Moreover, the corresponding 2r2^r eigenvectors of the transfer matrix are expressed in terms of rotated eigenvectors of HmH_m.Comment: LaTeX 2E document, using iopart.cls with iopams packages. 17 pages, uses eufb10 and eurm10 fonts. Typeset twice! vs2: Many changes and additions, adding 7 pages. vs3: minor corrections. vs4 minor improvement

    Integrability as a consequence of discrete holomorphicity: the Z_N model

    Full text link
    It has recently been established that imposing the condition of discrete holomorphicity on a lattice parafermionic observable leads to the critical Boltzmann weights in a number of lattice models. Remarkably, the solutions of these linear equations also solve the Yang-Baxter equations. We extend this analysis for the Z_N model by explicitly considering the condition of discrete holomorphicity on two and three adjacent rhombi. For two rhombi this leads to a quadratic equation in the Boltzmann weights and for three rhombi a cubic equation. The two-rhombus equation implies the inversion relations. The star-triangle relation follows from the three-rhombus equation. We also show that these weights are self-dual as a consequence of discrete holomorphicity.Comment: 11 pages, 7 figures, some clarifications and a reference adde
    • …
    corecore