319 research outputs found

    Qualitative and Quantitative Detection of Chlamydophila pneumoniae DNA in Cerebrospinal Fluid from Multiple Sclerosis Patients and Controls

    Get PDF
    A standardized molecular test for the detection of Chlamydophila pneumoniae DNA in cerebrospinal fluid (CSF) would assist the further assessment of the association of C. pneumoniae with multiple sclerosis (MS). We developed and validated a qualitative colorimetric microtiter plate-based PCR assay (PCR-EIA) and a real-time quantitative PCR assay (TaqMan) for detection of C. pneumoniae DNA in CSF specimens from MS patients and controls. Compared to a touchdown nested-PCR assay, the sensitivity, specificity, and concordance of the PCR-EIA assay were 88.5%, 93.2%, and 90.5%, respectively, on a total of 137 CSF specimens. PCR-EIA presented a significantly higher sensitivity in MS patients (p = 0.008) and a higher specificity in other neurological diseases (p = 0.018). Test reproducibility of the PCR-EIA assay was statistically related to the volumes of extract DNA included in the test (p = 0.033); a high volume, which was equivalent to 100 µl of CSF per reaction, yielded a concordance of 96.8% between two medical technologists running the test at different times. The TaqMan quantitative PCR assay detected 26 of 63 (41.3%) of positive CSF specimens that tested positive by both PCR-EIA and nested-PCR qualitative assays. None of the CSF specimens that were negative by the two qualitative PCR methods were detected by the TaqMan quantitative PCR. The PCR-EIA assay detected a minimum of 25 copies/ml C. pneumoniae DNA in plasmid-spiked CSF, which was at least 10 times more sensitive than TaqMan. These data indicated that the PCR-EIA assay possessed a sensitivity that was equal to the nested-PCR procedures for the detection of C. pneumoniae DNA in CSF. The TaqMan system may not be sensitive enough for diagnostic purposes due to the low C. pneumoniae copies existing in the majority of CSF specimens from MS patients

    Spin splitting and Kondo effect in quantum dots coupled to noncollinear ferromagnetic leads

    Full text link
    We study the Kondo effect in a quantum dot coupled to two noncollinear ferromagnetic leads. First, we study the spin splitting δϵ=ϵϵ\delta\epsilon=\epsilon_{\downarrow}-\epsilon_{\uparrow} of an energy level in the quantum dot by tunnel couplings to the ferromagnetic leads, using the Poor man's scaling method. The spin splitting takes place in an intermediate direction between magnetic moments in the two leads. δϵpcos2(θ/2)+v2sin2(θ/2)\delta\epsilon \propto p\sqrt{\cos^2(\theta/2)+v^2\sin^2(\theta/2)}, where pp is the spin polarization in the leads, θ\theta is the angle between the magnetic moments, and vv is an asymmetric factor of tunnel barriers (1<v<1-1<v<1). Hence the spin splitting is always maximal in the parallel alignment of two ferromagnets (θ=0\theta=0) and minimal in the antiparallel alignment (θ=π\theta=\pi). Second, we calculate the Kondo temperature TKT_{\mathrm{K}}. The scaling calculation yields an analytical expression of TKT_{\mathrm{K}} as a function of θ\theta and pp, TK(θ,p)T_{\mathrm{K}}(\theta, p), when δϵTK\delta\epsilon \ll T_{\mathrm{K}}. TK(θ,p)T_{\mathrm{K}}(\theta, p) is a decreasing function with respect to pcos2(θ/2)+v2sin2(θ/2)p\sqrt{\cos^2(\theta/2)+v^2\sin^2(\theta/2)}. When δϵ\delta\epsilon is relevant, we evaluate TK(δϵ,θ,p)T_{\mathrm{K}}(\delta\epsilon, \theta, p) using the slave-boson mean-field theory. The Kondo resonance is split into two by finite δϵ\delta\epsilon, which results in the spin accumulation in the quantum dot and suppression of the Kondo effect.Comment: 11 pages, 8 figures, revised versio

    Axial and pseudoscalar current correlators and their couplings to eta and etaprime mesons

    Full text link
    Correlators of singlet and octet axial currents, as well as anomaly and pseudoscalar densities have been studied using QCD sum rules. Several of these sum rules are used to determine the couplings f^8_eta, f^0_eta, f^8_etaprime and f^0_etaprime. We find mutually consistent values which are also in agreement with phenomenological values obtained from data on various decay and production rates. While most of the sum rules studied by us are independent of the contributions of direct instantons and screening correction, the singlet-singlet current correlator and the anomaly-anomaly correlator improve by their inclusion.Comment: 31 pages, 11 figure

    Modeling and Representation of Geometric Tolerances Information in Integrated Measurement Processes

    Get PDF
    Modeling and representation of geometric tolerances information across an enterprise is viable due to the advances in Internet technologies and increasing integration requirements from industry. In Integrated Measurement Processes (IMP), geometric tolerances data model must support different models from several well-defined standards: including ASME Y14.5M-1994, STEP, DMIS, and others. In this paper, we propose a layered conformance level geometric tolerances representation model. This model uses the widely applied ASME Y14.5M-1994 as its foundation layer by abstracting most information from this standard. The additional geometric tolerances information defined by DMIS and STEP is incorporated into this model to form corresponding conformance layers that support IMP. Thus, different application domains in an enterprise can use this data model to exchange product information. This model is further transformed with XML Schema that can be used to generate XML instance file to satisfy geometric tolerances representation requirements in IMP

    Extreme Sensitivity of the Superconducting State in Thin Films

    Full text link
    All non-interacting two-dimensional electronic systems are expected to exhibit an insulating ground state. This conspicuous absence of the metallic phase has been challenged only in the case of low-disorder, low density, semiconducting systems where strong interactions dominate the electronic state. Unexpectedly, over the last two decades, there have been multiple reports on the observation of a state with metallic characteristics on a variety of thin-film superconductors. To date, no theoretical explanation has been able to fully capture the existence of such a state for the large variety of superconductors exhibiting it. Here we show that for two very different thin-film superconductors, amorphous indium-oxide and a single-crystal of 2H-NbSe2, this metallic state can be eliminated by filtering external radiation. Our results show that these superconducting films are extremely sensitive to external perturbations leading to the suppression of superconductivity and the appearance of temperature independent, metallic like, transport at low temperatures. We relate the extreme sensitivity to the theoretical observation that, in two-dimensions, superconductivity is only marginally stable.Comment: 10 pages, 6 figure
    corecore