20,380 research outputs found
Effect of spin orbit scattering on the magnetic and superconducting properties of nearly ferromagnetic metals: application to granular Pt
We calculate the effect of scattering on the static, exchange enhanced, spin
susceptibility and show that in particular spin orbit scattering leads to a
reduction of the giant moments and spin glass freezing temperature due to
dilute magnetic impurities. The harmful spin fluctuation contribution to the
intra-grain pairing interaction is strongly reduced opening the way for BCS
superconductivity. We are thus able to explain the superconducting and magnetic
properties recently observed in granular Pt as due to scattering effects in
single small grains.Comment: 9 pages 3 figures, accepted for publication in Phys. Rev. Letter
Optical data transmission from the CMS cathode strip chamber peripheral trigger electronics to sector processor crate
Modelling Social Structures and Hierarchies in Language Evolution
Language evolution might have preferred certain prior social configurations
over others. Experiments conducted with models of different social structures
(varying subgroup interactions and the role of a dominant interlocutor) suggest
that having isolated agent groups rather than an interconnected agent is more
advantageous for the emergence of a social communication system. Distinctive
groups that are closely connected by communication yield systems less like
natural language than fully isolated groups inhabiting the same world.
Furthermore, the addition of a dominant male who is asymmetrically favoured as
a hearer, and equally likely to be a speaker has no positive influence on the
disjoint groups.Comment: 14 pages, 3 figures, 1 table. In proceedings of AI-2010, The
Thirtieth SGAI International Conference on Innovative Techniques and
Applications of Artificial Intelligence, Cambridge, England, UK, 14-16
December 201
Recommended from our members
Rotational 3D Printing of Sensor Devices using Reactive Ink Chemistries
This paper charts progress in three key areas of a project supported by both UK
government and UK industry to manufacture novel sensor devices using rotary 3D printing
technology and innovative ink chemistries; (1) the development of an STL file slicing algorithm
that returns constant Z height 2D contour data at a resolution that matches the given print head
setup, allowing digital images to be generated of the correct size without the need for scaling;
(2) the development of image transformation algorithms which allow images to be printed at
higher resolutions using tilted print heads and; (3) the formulation of multi part reaction inks
which combine and react on the substrate to form solid material layers with a finite thickness. A
Direct Light Projection (DLP) technique demonstrated the robustness of the slice data by
constructing fine detailed three dimensional test pieces which were comparable to identical parts
built in an identical way from slice data obtained using commercial software. Material systems
currently under investigation include plaster, stiff polyamides and epoxy polymers and
conductive metallic’s. Early experimental results show conductivities of silver approaching
1.42x105 Siemens/m.Mechanical Engineerin
Imperfect Homoclinic Bifurcations
Experimental observations of an almost symmetric electronic circuit show
complicated sequences of bifurcations. These results are discussed in the light
of a theory of imperfect global bifurcations. It is shown that much of the
dynamics observed in the circuit can be understood by reference to imperfect
homoclinic bifurcations without constructing an explicit mathematical model of
the system.Comment: 8 pages, 11 figures, submitted to PR
Multi-Layer Cyber-Physical Security and Resilience for Smart Grid
The smart grid is a large-scale complex system that integrates communication
technologies with the physical layer operation of the energy systems. Security
and resilience mechanisms by design are important to provide guarantee
operations for the system. This chapter provides a layered perspective of the
smart grid security and discusses game and decision theory as a tool to model
the interactions among system components and the interaction between attackers
and the system. We discuss game-theoretic applications and challenges in the
design of cross-layer robust and resilient controller, secure network routing
protocol at the data communication and networking layers, and the challenges of
the information security at the management layer of the grid. The chapter will
discuss the future directions of using game-theoretic tools in addressing
multi-layer security issues in the smart grid.Comment: 16 page
Infrared study of spin crossover Fe-picolylamine complex
Infrared (IR) absorption spectroscopy has been used to probe the evolution of
microscopic vibrational states upon the temperature- and photo-induced spin
crossovers in [Fe(2-picolylamine)3]Cl2EtOH (Fe-pic). To overcome the small
sizes and the strong IR absorption of the crystal samples used, an IR
synchrotron radiation source and an IR microscope have been used. The obtained
IR spectra of Fe-pic show large changes between high-spin and low-spin states
for both the temperature- and the photo- induced spin crossovers. Although the
spectra in the temperature- and photo-induced high-spin states are relatively
similar to each other, they show distinct differences below 750 cm-1. This
demonstrates that the photo-induced high-spin state involves microscopically
different characters from those of the temperature-induced high-spin state. The
results are discussed in terms of local pressure and structural deformations
within the picolylamine ligands, and in terms of their possible relevance to
the development of macroscopic photo-induced phase in Fe-pic.Comment: 6 pages (text) and 6 figures,submitted to J. Phys. Soc. Jp
The COBE Diffuse Infrared Background Experiment Search for the Cosmic Infrared Background: I. Limits and Detections
The DIRBE on the COBE spacecraft was designed primarily to conduct systematic
search for an isotropic CIB in ten photometric bands from 1.25 to 240 microns.
The results of that search are presented here. Conservative limits on the CIB
are obtained from the minimum observed brightness in all-sky maps at each
wavelength, with the faintest limits in the DIRBE spectral range being at 3.5
microns (\nu I_\nu < 64 nW/m^2/sr, 95% CL) and at 240 microns (\nu I_\nu < 28
nW/m^2/sr, 95% CL). The bright foregrounds from interplanetary dust scattering
and emission, stars, and interstellar dust emission are the principal
impediments to the DIRBE measurements of the CIB. These foregrounds have been
modeled and removed from the sky maps. Assessment of the random and systematic
uncertainties in the residuals and tests for isotropy show that only the 140
and 240 microns data provide candidate detections of the CIB. The residuals and
their uncertainties provide CIB upper limits more restrictive than the dark sky
limits at wavelengths from 1.25 to 100 microns. No plausible solar system or
Galactic source of the observed 140 and 240 microns residuals can be
identified, leading to the conclusion that the CIB has been detected at levels
of \nu I_\nu = 25+-7 and 14+-3 nW/m^2/sr at 140 and 240 microns respectively.
The integrated energy from 140 to 240 microns, 10.3 nW/m^2/sr, is about twice
the integrated optical light from the galaxies in the Hubble Deep Field,
suggesting that star formation might have been heavily enshrouded by dust at
high redshift. The detections and upper limits reported here provide new
constraints on models of the history of energy-releasing processes and dust
production since the decoupling of the cosmic microwave background from matter.Comment: 26 pages and 5 figures, accepted for publication in the Astrophyical
Journa
- …
