306 research outputs found

    Application of the Gillespie algorithm to a granular intruder particle

    Full text link
    We show how the Gillespie algorithm, originally developed to describe coupled chemical reactions, can be used to perform numerical simulations of a granular intruder particle colliding with thermalized bath particles. The algorithm generates a sequence of collision ``events'' separated by variable time intervals. As input, it requires the position-dependent flux of bath particles at each point on the surface of the intruder particle. We validate the method by applying it to a one-dimensional system for which the exact solution of the homogeneous Boltzmann equation is known and investigate the case where the bath particle velocity distribution has algebraic tails. We also present an application to a granular needle in bath of point particles where we demonstrate the presence of correlations between the translational and rotational degrees of freedom of the intruder particle. The relationship between the Gillespie algorithm and the commonly used Direct Simulation Monte Carlo (DSMC) method is also discussed.Comment: 13 pages, 8 figures, to be published in J. Phys. A Math. Ge

    Coefficient of Restitution for Viscoelastic Spheres: The Effect of Delayed Recovery

    Full text link
    The coefficient of normal restitution of colliding viscoelastic spheres is computed as a function of the material properties and the impact velocity. From simple arguments it becomes clear that in a collision of purely repulsively interacting particles, the particles loose contact slightly before the distance of the centers of the spheres reaches the sum of the radii, that is, the particles recover their shape only after they lose contact with their collision partner. This effect was neglected in earlier calculations which leads erroneously to attractive forces and, thus, to an underestimation of the coefficient of restitution. As a result we find a novel dependence of the coefficient of restitution on the impact rate.Comment: 11 pages, 2 figure

    Coefficient of tangential restitution for the linear dashpot model

    Full text link
    The linear dashpot model for the inelastic normal force between colliding spheres leads to a constant coefficient of normal restitution, ϵn=\epsilon_n=const., which makes this model very popular for the investigation of dilute and moderately dense granular systems. For two frequently used models for the tangential interaction force we determine the coefficient of tangential restitution ϵt\epsilon_t, both analytically and by numerical integration of Newton's equation. Although ϵn=\epsilon_n=const. for the linear-dashpot model, we obtain pronounced and characteristic dependencies of the tangential coefficient on the impact velocity ϵt=ϵt(g)\epsilon_t=\epsilon_t(\vec{g}). The results may be used for event-driven simulations of granular systems of frictional particles.Comment: 12 pages, 12 figure

    Oscillatory instability in a driven granular gas

    Full text link
    We discovered an oscillatory instability in a system of inelastically colliding hard spheres, driven by two opposite "thermal" walls at zero gravity. The instability, predicted by a linear stability analysis of the equations of granular hydrodynamics, occurs when the inelasticity of particle collisions exceeds a critical value. Molecular dynamic simulations support the theory and show a stripe-shaped cluster moving back and forth in the middle of the box away from the driving walls. The oscillations are irregular but have a single dominating frequency that is close to the frequency at the instability onset, predicted from hydrodynamics.Comment: 7 pages, 4 figures, to appear in Europhysics Letter

    Movers and shakers: Granular damping in microgravity

    Full text link
    The response of an oscillating granular damper to an initial perturbation is studied using experiments performed in microgravity and granular dynamics mulations. High-speed video and image processing techniques are used to extract experimental data. An inelastic hard sphere model is developed to perform simulations and the results are in excellent agreement with the experiments. The granular damper behaves like a frictional damper and a linear decay of the amplitude is bserved. This is true even for the simulation model, where friction forces are absent. A simple expression is developed which predicts the optimal damping conditions for a given amplitude and is independent of the oscillation frequency and particle inelasticities.Comment: 9 pages, 9 figure

    Towards a continuum theory of clustering in a freely cooling inelastic gas

    Full text link
    We performed molecular dynamics simulations to investigate the clustering instability of a freely cooling dilute gas of inelastically colliding disks in a quasi-one-dimensional setting. We observe that, as the gas cools, the shear stress becomes negligibly small, and the gas flows by inertia only. Finite-time singularities, intrinsic in such a flow, are arrested only when close-packed clusters are formed. We observe that the late-time dynamics of this system are describable by the Burgers equation with vanishing viscosity, and predict the long-time coarsening behavior.Comment: 7 pages, 5 eps figures, to appear in Europhys. Let

    Finite-sample frequency distributions originating from an equiprobability distribution

    Full text link
    Given an equidistribution for probabilities p(i)=1/N, i=1..N. What is the expected corresponding rank ordered frequency distribution f(i), i=1..N, if an ensemble of M events is drawn?Comment: 4 pages, 4 figure

    Fractal Substructure of a Nanopowder

    Full text link
    The structural evolution of a nano-powder by repeated dispersion and settling can lead to characteristic fractal substructures. This is shown by numerical simulations of a two-dimensional model agglomerate of adhesive rigid particles. The agglomerate is cut into fragments of a characteristic size l, which then are settling under gravity. Repeating this procedure converges to a loosely packed structure, the properties of which are investigated: a) The final packing density is independent of the initialization, b) the short-range correlation function is independent of the fragment size, c) the structure is fractal up to the fragmentation scale l with a fractal dimension close to 1.7, and d) the relaxation time increases linearly with l.Comment: 4 pages, 8 figure

    Linear Response for Granular Fluids

    Full text link
    The linear response of an isolated, homogeneous granular fluid to small spatial perturbations is studied by methods of non-equilibrium statistical mechanics. The long wavelength linear hydrodynamic equations are obtained, with formally exact expressions for the susceptibilities and transport coefficients. The latter are given in equivalent Einstein-Helfand and Green-Kubo forms. The context of these results and their contrast with corresponding results for normal fluids are discussed.Comment: Submitted to PR

    Phase separation of a driven granular gas in annular geometry

    Full text link
    This work investigates phase separation of a monodisperse gas of inelastically colliding hard disks confined in a two-dimensional annulus, the inner circle of which represents a "thermal wall". When described by granular hydrodynamic equations, the basic steady state of this system is an azimuthally symmetric state of increased particle density at the exterior circle of the annulus. When the inelastic energy loss is sufficiently large, hydrodynamics predicts spontaneous symmetry breaking of the annular state, analogous to the van der Waals-like phase separation phenomenon previously found in a driven granular gas in rectangular geometry. At a fixed aspect ratio of the annulus, the phase separation involves a "spinodal interval" of particle area fractions, where the gas has negative compressibility in the azimuthal direction. The heat conduction in the azimuthal direction tends to suppress the instability, as corroborated by a marginal stability analysis of the basic steady state with respect to small perturbations. To test and complement our theoretical predictions we performed event-driven molecular dynamics (MD) simulations of this system. We clearly identify the transition to phase separated states in the MD simulations, despite large fluctuations present, by measuring the probability distribution of the amplitude of the fundamental Fourier mode of the azimuthal spectrum of the particle density. We find that the instability region, predicted from hydrodynamics, is always located within the phase separation region observed in the MD simulations. This implies the presence of a binodal (coexistence) region, where the annular state is metastable. The phase separation persists when the driving and elastic walls are interchanged, and also when the elastic wall is replaced by weakly inelastic one.Comment: 9 pages, 10 figures, to be published in PR
    corecore