621 research outputs found

    Causal effect of plasminogen activator inhibitor type 1 on coronary heart disease

    Get PDF
    Background: Plasminogen activator inhibitor type 1 (PAI‐1) plays an essential role in the fibrinolysis system and thrombosis. Population studies have reported that blood PAI‐1 levels are associated with increased risk of coronary heart disease (CHD). However, it is unclear whether the association reflects a causal influence of PAI‐1 on CHD risk. Methods and Results: To evaluate the association between PAI‐1 and CHD, we applied a 3‐step strategy. First, we investigated the observational association between PAI‐1 and CHD incidence using a systematic review based on a literature search for PAI‐1 and CHD studies. Second, we explored the causal association between PAI‐1 and CHD using a Mendelian randomization approach using summary statistics from large genome‐wide association studies. Finally, we explored the causal effect of PAI‐1 on cardiovascular risk factors including metabolic and subclinical atherosclerosis measures. In the systematic meta‐analysis, the highest quantile of blood PAI‐1 level was associated with higher CHD risk comparing with the lowest quantile (odds ratio=2.17; 95% CI: 1.53, 3.07) in an age‐ and sex‐adjusted model. The effect size was reduced in studies using a multivariable‐adjusted model (odds ratio=1.46; 95% CI: 1.13, 1.88). The Mendelian randomization analyses suggested a causal effect of increased PAI‐1 level on CHD risk (odds ratio=1.22 per unit increase of log‐transformed PAI‐1; 95% CI: 1.01, 1.47). In addition, we also detected a causal effect of PAI‐1 on elevating blood glucose and high‐density lipoprotein cholesterol. Conclusions: Our study indicates a causal effect of elevated PAI‐1 level on CHD risk, which may be mediated by glucose dysfunction.C. Song … Deborah Lawler … Lyle J. Palmer ... et al. (CHARGE Consortium Hemostatic Factor Working Group; ICBP Consortium; CHARGE Consortium Subclinical Working Group

    Aneurysms—from traumatology to screening

    Get PDF
    This paper deals with aneurysmal disease, primarily when localized in the abdominal aorta. It is based on the Olof Rudbeck lecture 2009. Aneurysm is a localized widening of an artery, and its definition has become an important issue today when the disease is in focus for screening programmes. Aetiology and pathogenesis are still poorly understood, but a genetic component determining the strength of the aortic wall is important, and there is a strong male dominance. Historically, several attempts have been made to treat the disease, but reconstructive treatment has been possible only since 1951, in an increasing number of cases performed endovascularly. By early detection through screening, and thereby the possibility to treat before rupture, it has now become possible to decrease the total mortality from the disease in the population

    Genome Evolution of a Tertiary Dinoflagellate Plastid

    Get PDF
    The dinoflagellates have repeatedly replaced their ancestral peridinin-plastid by plastids derived from a variety of algal lineages ranging from green algae to diatoms. Here, we have characterized the genome of a dinoflagellate plastid of tertiary origin in order to understand the evolutionary processes that have shaped the organelle since it was acquired as a symbiont cell. To address this, the genome of the haptophyte-derived plastid in Karlodinium veneficum was analyzed by Sanger sequencing of library clones and 454 pyrosequencing of plastid enriched DNA fractions. The sequences were assembled into a single contig of 143 kb, encoding 70 proteins, 3 rRNAs and a nearly full set of tRNAs. Comparative genomics revealed massive rearrangements and gene losses compared to the haptophyte plastid; only a small fraction of the gene clusters usually found in haptophytes as well as other types of plastids are present in K. veneficum. Despite the reduced number of genes, the K. veneficum plastid genome has retained a large size due to expanded intergenic regions. Some of the plastid genes are highly diverged and may be pseudogenes or subject to RNA editing. Gene losses and rearrangements are also features of the genomes of the peridinin-containing plastids, apicomplexa and Chromera, suggesting that the evolutionary processes that once shaped these plastids have occurred at multiple independent occasions over the history of the Alveolata

    Combined analysis of three genome-wide association studies on vWF and FVIII plasma levels

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Elevated levels of factor VIII (FVIII) and von Willebrand Factor (vWF) are well-established risk factors for cardiovascular diseases, in particular venous thrombosis. Although high, the heritability of these traits is poorly explained by the genetic factors known so far. The aim of this work was to identify novel single nucleotide polymorphisms (SNPs) that could influence the variability of these traits.</p> <p>Methods</p> <p>Three independent genome-wide association studies for vWF plasma levels and FVIII activity were conducted and their results were combined into a meta-analysis totalling 1,624 subjects.</p> <p>Results</p> <p>No single nucleotide polymorphism (SNP) reached the study-wide significance level of 1.12 × 10<sup>-7 </sup>that corresponds to the Bonferroni correction for the number of tested SNPs. Nevertheless, the recently discovered association of <it>STXBP5</it>, <it>STX2</it>, <it>TC2N </it>and <it>CLEC4M </it>genes with vWF levels and that of <it>SCARA5 </it>and STAB2 genes with FVIII levels were confirmed in this meta-analysis. Besides, among the fifteen novel SNPs showing promising association at p < 10<sup>-5 </sup>with either vWF or FVIII levels in the meta-analysis, one located in <it>ACCN1 </it>gene also showed weak association (<it>P </it>= 0.0056) with venous thrombosis in a sample of 1,946 cases and 1,228 controls.</p> <p>Conclusions</p> <p>This study has generated new knowledge on genomic regions deserving further investigations in the search for genetic factors influencing vWF and FVIII plasma levels, some potentially implicated in VT, as well as providing some supporting evidence of previously identified genes.</p

    ADAM33, a New Candidate for Psoriasis Susceptibility

    Get PDF
    Psoriasis is a chronic skin disorder with multifactorial etiology. In a recent study, we reported results of a genome-wide scan on 46 French extended families presenting with plaque psoriasis. In addition to unambiguous linkage to the major susceptibility locus PSORS1 on Chromosome 6p21, we provided evidence for a susceptibility locus on Chromosome 20p13. To follow up this novel psoriasis susceptibility locus we used a family-based association test (FBAT) for an association scan over the 17 Mb candidate region. A total of 85 uncorrelated SNP markers located in 65 genes of the region were initially investigated in the same set of large families used for the genome wide search, which consisted of 295 nuclear families. When positive association was obtained for a SNP, candidate genes nearby were explored more in detail using a denser set of SNPs. Thus, the gene ADAM33 was found to be significantly associated with psoriasis in this family set (The best association was on a 3-SNP haplotype P = 0.00004, based on 1,000,000 permutations). This association was independent of PSORS1. ADAM33 has been previously associated with asthma, which demonstrates that immune system diseases may be controlled by common susceptibility genes with general effects on dermal inflammation and immunity. The identification of ADAM33 as a psoriasis susceptibility gene identified by positional cloning in an outbred population should provide insights into the pathogenesis and natural history of this common disease

    The Complete Plastid Genome Sequence of the Secondarily Nonphotosynthetic Alga Cryptomonas paramecium: Reduction, Compaction, and Accelerated Evolutionary Rate

    Get PDF
    The cryptomonads are a group of unicellular algae that acquired photosynthesis through the engulfment of a red algal cell, a process called secondary endosymbiosis. Here, we present the complete plastid genome sequence of the secondarily nonphotosynthetic species Cryptomonas paramecium CCAP977/2a. The ∼78 kilobase pair (Kbp) C. paramecium genome contains 82 predicted protein genes, 29 transfer RNA genes, and a single pseudogene (atpF). The C. paramecium plastid genome is approximately 50 Kbp smaller than those of the photosynthetic cryptomonads Guillardia theta and Rhodomonas salina; 71 genes present in the G. theta and/or R. salina plastid genomes are missing in C. paramecium. The pet, psa, and psb photosynthetic gene families are almost entirely absent. Interestingly, the ribosomal RNA operon, present as inverted repeats in most plastid genomes (including G. theta and R. salina), exists as a single copy in C. paramecium. The G + C content (38%) is higher in C. paramecium than in other cryptomonad plastid genomes, and C. paramecium plastid genes are characterized by significantly different codon usage patterns and increased evolutionary rates. The content and structure of the C. paramecium plastid genome provides insight into the changes associated with recent loss of photosynthesis in a predominantly photosynthetic group of algae and reveals features shared with the plastid genomes of other secondarily nonphotosynthetic eukaryotes

    Measurement of vector boson production cross sections and their ratios using pp collisions at s=13.6 TeV with the ATLAS detector

    Get PDF

    Differential cross-sections for events with missing transverse momentum and jets measured with the ATLAS detector in 13 TeV proton-proton collisions

    Get PDF
    corecore