15,716 research outputs found

    Analysis of phase transitions in the mean-field Blume-Emery-Griffiths model

    Get PDF
    In this paper we give a complete analysis of the phase transitions in the mean-field Blume-Emery-Griffiths lattice-spin model with respect to the canonical ensemble, showing both a second-order, continuous phase transition and a first-order, discontinuous phase transition for appropriate values of the thermodynamic parameters that define the model. These phase transitions are analyzed both in terms of the empirical measure and the spin per site by studying bifurcation phenomena of the corresponding sets of canonical equilibrium macrostates, which are defined via large deviation principles. Analogous phase transitions with respect to the microcanonical ensemble are also studied via a combination of rigorous analysis and numerical calculations. Finally, probabilistic limit theorems for appropriately scaled values of the total spin are proved with respect to the canonical ensemble. These limit theorems include both central-limit-type theorems, when the thermodynamic parameters are not equal to critical values, and noncentral-limit-type theorems, when these parameters equal critical values.Comment: Published at http://dx.doi.org/10.1214/105051605000000421 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Structure of giant nuclear molecules

    Get PDF
    Strong indirect evidence exists for the existence of attractive forces between nuclei making surface contact. Experimentally, the recent observations of spontaneous positron production in heavy-ion collisions can only be understood if nuclei stick together for times long compared to the collision time. We show that any such tendency for nuclei to attract implies the existence of nuclear molecules with entirely new kinds of collective modes. We present a simple model for these modes and apply it to 238U-238U
    • …
    corecore