27 research outputs found

    NetTurnP – Neural Network Prediction of Beta-turns by Use of Evolutionary Information and Predicted Protein Sequence Features

    Get PDF
    UNLABELLED: β-turns are the most common type of non-repetitive structures, and constitute on average 25% of the amino acids in proteins. The formation of β-turns plays an important role in protein folding, protein stability and molecular recognition processes. In this work we present the neural network method NetTurnP, for prediction of two-class β-turns and prediction of the individual β-turn types, by use of evolutionary information and predicted protein sequence features. It has been evaluated against a commonly used dataset BT426, and achieves a Matthews correlation coefficient of 0.50, which is the highest reported performance on a two-class prediction of β-turn and not-β-turn. Furthermore NetTurnP shows improved performance on some of the specific β-turn types. In the present work, neural network methods have been trained to predict β-turn or not and individual β-turn types from the primary amino acid sequence. The individual β-turn types I, I', II, II', VIII, VIa1, VIa2, VIba and IV have been predicted based on classifications by PROMOTIF, and the two-class prediction of β-turn or not is a superset comprised of all β-turn types. The performance is evaluated using a golden set of non-homologous sequences known as BT426. Our two-class prediction method achieves a performance of: MCC=0.50, Qtotal=82.1%, sensitivity=75.6%, PPV=68.8% and AUC=0.864. We have compared our performance to eleven other prediction methods that obtain Matthews correlation coefficients in the range of 0.17-0.47. For the type specific β-turn predictions, only type I and II can be predicted with reasonable Matthews correlation coefficients, where we obtain performance values of 0.36 and 0.31, respectively. CONCLUSION: The NetTurnP method has been implemented as a webserver, which is freely available at http://www.cbs.dtu.dk/services/NetTurnP/. NetTurnP is the only available webserver that allows submission of multiple sequences

    The European livestock resistome

    Get PDF
    Metagenomic sequencing has proven to be a powerful tool in the monitoring of antimicrobial resistance (AMR). Here, we provide a comparative analysis of the resistome from pigs, poultry, veal calves, turkey, and rainbow trout, for a total of 538 herds across nine European countries. We calculated the effects of per-farm management practices and antimicrobial usage (AMU) on the resistome in pigs, broilers, and veal calves. We also provide an in-depth study of the associations between bacterial diversity, resistome diversity, and AMR abundances as well as co-occurrence analysis of bacterial taxa and antimicrobial resistance genes (ARGs) and the universality of the latter. The resistomes of veal calves and pigs clustered together, as did those of avian origin, while the rainbow trout resistome was different. Moreover, we identified clear core resistomes for each specific food-producing animal species. We identified positive associations between bacterial alpha diversity and both resistome alpha diversity and abundance. Network analyses revealed very few taxa-ARG associations in pigs but a large number for the avian species. Using updated reference databases and optimized bioinformatics, previously reported significant associations between AMU, biosecurity, and AMR in pig and poultry farms were validated. AMU is an important driver for AMR; however, our integrated analyses suggest that factors contributing to increased bacterial diversity might also be associated with higher AMR load. We also found that dispersal limitations of ARGs are shaping livestock resistomes, and future efforts to fight AMR should continue to emphasize biosecurity measures.IMPORTANCEUnderstanding the occurrence, diversity, and drivers for antimicrobial resistance (AMR) is important to focus future control efforts. So far, almost all attempts to limit AMR in livestock have addressed antimicrobial consumption. We here performed an integrated analysis of the resistomes of five important farmed animal populations across Europe finding that the resistome and AMR levels are also shaped by factors related to bacterial diversity, as well as dispersal limitations. Thus, future studies and interventions aimed at reducing AMR should not only address antimicrobial usage but also consider other epidemiological and ecological factors

    Proficiency testing of virus diagnostics based on bioinformatics analysis of simulated in silico high-throughput sequencing data sets

    Get PDF
    Quality management and independent assessment of high-throughput sequencing-based virus diagnostics have not yet been established as a mandatory approach for ensuring comparable results. The sensitivity and specificity of viral high-throughput sequence data analysis are highly affected by bioinformatics processing using publicly available and custom tools and databases and thus differ widely between individuals and institutions. Here we present the results of the COMPARE [Collaborative Management Platform for Detection and Analyses of (Re-) emerging and Foodborne Outbreaks in Europe] in silico virus proficiency test. An artificial, simulated in silico data set of Illumina HiSeq sequences was provided to 13 different European institutes for bioinformatics analysis to identify viral pathogens in high-throughput sequence data. Comparison of the participants’ analyses shows that the use of different tools, programs, and databases for bioinformatics analyses can impact the correct identification of viral sequences from a simple data set. The identification of slightly mutated and highly divergent virus genomes has been shown to be most challenging. Furthermore, the interpretation of the results, together with a fictitious case report, by the participants showed that in addition to the bioinformatics analysis, the virological evaluation of the results can be important in clinical settings. External quality assessment and proficiency testing should become an important part of validating high-throughput sequencing-based virus diagnostics and could improve the harmonization, comparability, and reproducibility of results. There is a need for the establishment of international proficiency testing, like that established for conventional laboratory tests such as PCR, for bioinformatics pipelines and the interpretation of such results

    Vascular and Alzheimer's disease markers independently predict brain atrophy rate in Alzheimer's Disease Neuroimaging Initiative controls.

    Get PDF
    This study assessed relationships among white matter hyperintensities (WMH), cerebrospinal fluid (CSF), Alzheimer's disease (AD) pathology markers, and brain volume loss. Subjects included 197 controls, 331 individuals with mild cognitive impairment (MCI), and 146 individuals with AD with serial volumetric 1.5-T MRI. CSF Aβ1-42 (n = 351) and tau (n = 346) were measured. Brain volume change was quantified using the boundary shift integral (BSI). We assessed the association between baseline WMH volume and annualized BSI, adjusting for intracranial volume. We also performed multiple regression analyses in the CSF subset, assessing the relationships of WMH and Aβ1-42 and/or tau with BSI. WMH burden was positively associated with BSI in controls (p = 0.02) but not MCI or AD. In multivariable models, WMH (p = 0.003) and Aβ1-42 (p = 0.001) were independently associated with BSI in controls; in MCI Aβ1-42 (p < 0.001) and tau (p = 0.04) were associated with BSI. There was no evidence of independent effects of WMH or CSF measures on BSI in AD. These data support findings that vascular damage is associated with increased brain atrophy in the context of AD pathology in pre-dementia stages

    The European livestock resistome

    No full text
    Metagenomic sequencing has proven to be a powerful tool in the monitoring of antimicrobial resistance (AMR). Here, we provide a comparative analysis of the resistome from pigs, poultry, veal calves, turkey, and rainbow trout, for a total of 538 herds across nine European countries. We calculated the effects of per-farm management practices and antimicrobial usage (AMU) on the resistome in pigs, broilers, and veal calves. We also provide an in-depth study of the associations between bacterial diversity, resistome diversity, and AMR abundances as well as co-occurrence analysis of bacterial taxa and antimicrobial resistance genes (ARGs) and the universality of the latter. The resistomes of veal calves and pigs clustered together, as did those of avian origin, while the rainbow trout resistome was different. Moreover, we identified clear core resistomes for each specific food-producing animal species. We identified positive associations between bacterial alpha diversity and both resistome alpha diversity and abundance. Network analyses revealed very few taxa-ARG associations in pigs but a large number for the avian species. Using updated reference databases and optimized bioinformatics, previously reported significant associations between AMU, biosecurity, and AMR in pig and poultry farms were validated. AMU is an important driver for AMR; however, our integrated analyses suggest that factors contributing to increased bacterial diversity might also be associated with higher AMR load. We also found that dispersal limitations of ARGs are shaping livestock resistomes, and future efforts to fight AMR should continue to emphasize biosecurity measures.IMPORTANCEUnderstanding the occurrence, diversity, and drivers for antimicrobial resistance (AMR) is important to focus future control efforts. So far, almost all attempts to limit AMR in livestock have addressed antimicrobial consumption. We here performed an integrated analysis of the resistomes of five important farmed animal populations across Europe finding that the resistome and AMR levels are also shaped by factors related to bacterial diversity, as well as dispersal limitations. Thus, future studies and interventions aimed at reducing AMR should not only address antimicrobial usage but also consider other epidemiological and ecological factors
    corecore