30 research outputs found
Detecting slope and urban potential unstable areas by means of multi-platform remote sensing techniques: the Volterra (Italy) case study
Volterra (Central Italy) is a town of great historical interest, due to its vast and well-preserved cultural heritage, including a 2.6 km long Etruscan-medieval wall enclosure representing one of the most important elements. Volterra is located on a clayey hilltop prone to landsliding, soil erosion, therefore the town is subject to structural deterioration. During 2014, two impressive collapses occurred on the wall enclosure in the southwestern urban sector. Following these events, a monitoring campaign was carried out by means of remote sensing techniques, such as space-borne (PS-InSAR) and ground-based (GB-InSAR) radar interferometry, in order to analyze the displacements occurring both in the urban area and the surrounding slopes, and therefore to detect possible critical sectors with respect to instability phenomena. Infrared thermography (IRT) was also applied with the aim of detecting possible criticalities on the wall-enclosure, with special regards to moisture and seepage areas. PS-InSAR data allowed a stability back-monitoring on the area, revealing 19 active clusters displaying ground velocity higher than 10 mm/year in the period 2011–2015. The GB-InSAR system detected an acceleration up to 1.7 mm/h in near-real time as the March 2014 failure precursor. The IRT technique, employed on a double survey campaign, in both dry and rainy conditions, permitted to acquire 65 thermograms covering 23 sectors of the town wall, highlighting four thermal anomalies. The outcomes of this work demonstrate the usefulness of different remote sensing technologies for deriving information in risk prevention and management, and the importance of choosing the appropriate technology depending on the target, time sampling and investigation scale. In this paper, the use of a multi-platform remote sensing system permitted technical support of the local authorities and conservators, providing a comprehensive overview of the Volterra site, its cultural heritage and landscape, both in near-real time and back-analysis and at different scales of investigation
Catching geomorphological response to volcanic activity on steep slope volcanoes using multi-platform remote sensing
The geomorphological evolution of the volcanic Island of Stromboli (Italy) between July 2010 and June 2019 has been reconstructed by using multi-temporal, multi-platform remote sensing data. Digital elevation models (DEMs) from PLÉIADES-1 tri-stereo images and from Light Detection and Ranging (LiDAR) acquisitions allowed for topographic changes estimation. Data were comprised of high-spatial-resolution (QUICKBIRD) and moderate spatial resolution (SENTINEL-2) satellite images that allowed for the mapping of areas that were affected by major lithological and morphological changes. PLÉIADES tri-stereo and LiDAR DEMs have been quantitatively and qualitatively compared and, although there are artefacts in the smaller structures (e.g., ridges and valleys), there is still a clear consistency between the two DEMs for the larger structures (as the main valleys and ridges). The period between July 2010 and May 2012 showed only minor changes consisting of volcanoclastic sedimentation and some overflows outside the crater. Otherwise, between May 2012 and May 2017, large topographic changes occurred that were related to the emplacement of the 2014 lava flow in the NE part of the Sciara del Fuoco and to the accumulation of a volcaniclastic wedge in the central part of the Sciara del Fuoco. Between 2017 and 2019, minor changes were again detected due to small accumulation next to the crater terrace and the erosion in lower Sciara del Fuoco.Publishedid 4385V. Processi eruttivi e post-eruttiviJCR Journa
UAV-based multitemporal remote sensing surveys of volcano unstable flanks: a case study from Stromboli
UAV-based photogrammetry is becoming increasingly popular even in application fields that, until recently, were deemed unsuitable for this technique. Depending on the characteristics of the investigated scenario, the generation of three-dimensional (3D) topographic models may in fact be affected by significant inaccuracies unless site-specific adaptations are implemented into the data collection and processing routines. In this paper, an ad hoc procedure to exploit high-resolution aerial photogrammetry for the multitemporal analysis of the unstable Sciara del Fuoco (SdF) slope at Stromboli Island (Italy) is presented. Use of the technique is inherently problematic because of the homogeneous aspect of the gray ash slope, which prevents a straightforward identification of match points in continuous frames. Moreover, due to site accessibility restrictions enforced by local authorities after the volcanic paroxysm in July 2019, Ground Control Points (GCPs) cannot be positioned to constrain georeferencing. Therefore, all 3D point clouds were georeferenced using GCPs acquired in a 2019 (pre-paroxysm) survey, together with stable Virtual Ground Control Points (VGCPs) belonging to a LiDAR survey carried out in 2012. Alignment refinement was then performed by means of an iterative algorithm based on the closest points. The procedure succeeded in correctly georeferencing six high-resolution point clouds acquired from April 2017 to July 2021, whose time-focused analysis made it possible to track several geomorphological structures associated with the continued volcanic activity. The procedure can be further extended to smaller-scale analyses such as the estimation of locally eroded/accumulated volumes and pave the way for rapid UAV-based georeferenced surveys in emergency conditions at the SdF
Tracking morphological changes and slope instability using spaceborne and ground-based SAR data
Stromboli (Aeolian Archipelago, Italy) is an active volcano that is frequently affected by moderate to large mass wasting, which has occasionally triggered tsunamis. With the aim of understanding the relationship between the geomorphologic evolution and slope instability of Stromboli, remote sensing information from space-born Synthetic Aperture Radar (SAR) change detection and interferometry (InSAR) and Ground Based InSAR (GBInSAR) was compared with field observations and morphological analyses. Ground reflectivity and SqueeSAR⢠(an InSAR algorithm for surface deformation monitoring) displacement measurements from X-band COSMO-SkyMed satellites (CSK) were analysed together with displacement measurements from a permanent-sited, Ku-band GBInSAR system. Remote sensing results were compared with a preliminary morphological analysis of the Sciara del Fuoco (SdF) steep volcanic flank, which was carried out using a high-resolution Digital Elevation Model (DEM). Finally, field observations, supported by infrared thermographic surveys (IRT), allowed the interpretation and validation of remote sensing data. The analysis of the entire dataset (collected between January 2010 and December 2014) covers a period characterized by a low intensity of Strombolian activity. This period was punctuated by the occurrence of lava overflows, occurring from the crater terrace evolving downslope toward SdF, and flank eruptions, such as the 2014 event. The amplitude of the CSK images collected between February 22nd, 2010, and December 18th, 2014, highlights that during periods characterized by low-intensity Strombolian activity, the production of materials ejected from the crater terrace towards the SdF is generally low, and erosion is the prevailing process mainly affecting the central sector of the SdF. CSK-SqueeSAR⢠and GBInSAR data allowed the identification of low displacements in the SdF, except for high displacement rates (up to 1.5 mm/h) that were measured following both lava delta formation after the 2007 eruption and the lava overflows of 2010 and 2011. After the emplacement of the 2014 lava field, high displacements in the central and northern portions of the SdF were recorded by the GBInSAR device, whereas the spaceborne data were unable to detect these rapid movements. A comparison between IRT images and GBInSAR-derived displacement maps acquired during the same time interval revealed that the observed displacements along the SdF were related to the crumbling of newly emplaced 2014 lava and of its external breccia. Detected slope instability after the 2014 flank eruption was related to lava accumulation on the SdF and to the difference in the material underlying the 2014 lava flow: i) lava flows and breccia layers related to the 2002â03 and 2007 lava flow fields in the northern SdF sector and ii) loose volcaniclastic deposits in the central part of the SdF. This work emphasizes the importance of smart integration of spaceborne, SAR-derived hazard information with permanent-sited, operational monitoring by GBInSAR devices to detect areas impacted by mass wasting and volcanic activity