487 research outputs found

    Star formation around mid-infrared bubble N37: Evidence of cloud-cloud collision

    Full text link
    We have performed a multi-wavelength analysis of a mid-infrared (MIR) bubble N37 and its surrounding environment. The selected 15×' \times15' area around the bubble contains two molecular clouds (N37 cloud; Vlsr_{lsr}\sim37-43 km s1^{-1}, and C25.29+0.31; Vlsr_{lsr}\sim43-48 km s1^{-1}) along the line of sight. A total of seven OB stars are identified towards the bubble N37 using photometric criteria, and two of them are spectroscopically confirmed as O9V and B0V stars. Spectro-photometric distances of these two sources confirm their physical association with the bubble. The O9V star is appeared to be the primary ionizing source of the region, which is also in agreement with the desired Lyman continuum flux analysis estimated from the 20 cm data. The presence of the expanding HII region is revealed in the N37 cloud which could be responsible for the MIR bubble. Using the 13^{13}CO line data and photometric data, several cold molecular condensations as well as clusters of young stellar objects (YSOs) are identified in the N37 cloud, revealing ongoing star formation (SF) activities. However, the analysis of ages of YSOs and the dynamical age of the HII region do not support the origin of SF due to the influence of OB stars. The position-velocity analysis of 13^{13}CO data reveals that two molecular clouds are inter-connected by a bridge-like structure, favoring the onset of a cloud-cloud collision process. The SF activities (i.e. the formation of YSOs clusters and OB stars) in the N37 cloud are possibly influenced by the cloud-cloud collision.Comment: 18 pages, 13 figures, 2 tables, Accepted for publication in the Ap

    Large-scale mapping of the massive star-forming region RCW38 in the [CII] and PAH emission

    Get PDF
    We investigate the large-scale structure of the interstellar medium (ISM) around the massive star cluster RCW38 in the [CII] 158 um line and polycyclic aromatic hydrocarbon (PAH) emission. We carried out [CII] line mapping of an area of ~30'x15' for RCW~38 by a Fabry-Perot spectrometer on a 100 cm balloon-borne telescope with an angular resolution of ~1'.5. We compared the [CII] intensity map with the PAH and dust emission maps obtained by the AKARI satellite. The [CII] emission shows a highly nonuniform distribution around the cluster, exhibiting the structure widely extended to the north and the east from the center. The [CII] intensity rapidly drops toward the southwest direction, where a CO cloud appears to dominate. We decompose the 3-160 um spectral energy distributions of the surrounding ISM structure into PAH as well as warm and cool dust components with the help of 2.5-5 um spectra. We find that the [CII] emission spatially corresponds to the PAH emission better than to the dust emission, confirming the relative importance of PAHs for photo-electric heating of gas in photo-dissociation regions. A naive interpretation based on our observational results indicates that molecular clouds associated with RCW38 are located both on the side of and behind the cluster.Comment: 10 pages, 7 figures, accepted for publication in A&

    Performance Evaluation and Experimental Studies on Metallised Gel Propellants

    Get PDF
    Metallised gel propellants offer higher specific impulse and volumetric loading, reduced vaporisation loss, spillage and slosh problems and easy storage in comparison to the conventional liquid propellants. Theoretical performance analysis of gel propellant containing Al in unsymmetrical dimethyl hydrazine-dinitrogen tetroxide (UDMH-N/sub 2/O/sub 4} system shows peak Isp (vacuum condition) of 316.7 s and 318.3 s at oxidiser/fuel (O/f) ratios of 1.5 and 1.0, respectively for 30 per cent and 40 per cent UDMH-Al gel propellants, under standard conditions. The effect of other parameters like area ratio and chamber pressure on performance has been brought out in view of mission oriented applications. Aluminium has been found to be a better choice over magnesium in metallised gel propellants. Experimental studies on UDMH gellation using propellant grade (15 micrometer)and pyrotechnic grade (1.5 micrometer)Al in 500g batch level show that gellant(methyl cellulose) concentration could be reduced by 50 percent using pyrotechnic grade Al. The pseudoplastic-thixotropic behaviour, flow rate through die holes, burst pressure tests and bulk density are studied. UDMH -25 to 30 per cent Al gels with both grades of Al are found to be stable, pseudoplastic (shear thinning) and thixotropic (time-dependent shear thinning), but their flow pattern through die holes differ in nature

    Developmental Studies on Metallised UDMH and Kerosene Gels

    Get PDF
    The influence of particulate and hydrocolloid gellants and different surfactants on gellation of metallised stable gels of unsymmetrical dimethyl hydrazine (UDMH) and kerosene containing 30 per cent 15 micron Aluminium was studied. Metallised UDMH and kerosene gels were characterised with respect to pseudoplasticity, thixotropy, consistency and yield stress using Contrave's rheometer. The effect of shear rate and temperature on the viscosity of these gels was determined. Thermal stability, hypergolicity tests and flow rate studies were also conducted. Metallised UDMH and kerosene gels are found to be stable, thixotropic and pseudoplastic and easily flowing like a liquid under shear force

    TIRSPEC : TIFR Near Infrared Spectrometer and Imager

    Full text link
    We describe the TIFR Near Infrared Spectrometer and Imager (TIRSPEC) designed and built in collaboration with M/s. Mauna Kea Infrared LLC, Hawaii, USA, now in operation on the side port of the 2-m Himalayan Chandra Telescope (HCT), Hanle (Ladakh), India at an altitude of 4500 meters above mean sea level. The TIRSPEC provides for various modes of operation which include photometry with broad and narrow band filters, spectrometry in single order mode with long slits of 300" length and different widths, with order sorter filters in the Y, J, H and K bands and a grism as the dispersing element as well as a cross dispersed mode to give a coverage of 1.0 to 2.5 microns at a resolving power R of ~1200. The TIRSPEC uses a Teledyne 1024 x 1024 pixel Hawaii-1 PACE array detector with a cutoff wavelength of 2.5 microns and on HCT, provides a field of view of 307" x 307" with a plate scale of 0.3"/pixel. The TIRSPEC was successfully commissioned in June 2013 and the subsequent characterization and astronomical observations are presented here. The TIRSPEC has been made available to the worldwide astronomical community for science observations from May 2014.Comment: 20 pages, 21 figures, 2 tables. Accepted for publication in Journal of Astronomical Instrumentatio

    Marine climate and fisheries scenario of Kerala Climcard-3

    Get PDF
    Marine climate and fisheries scenario of Kerala Climcard-

    Solar Contamination in Extreme-precision Radial-velocity Measurements: Deleterious Effects and Prospects for Mitigation

    Get PDF
    Solar contamination, due to moonlight and atmospheric scattering of sunlight, can cause systematic errors in stellar radial velocity (RV) measurements that significantly detract from the ~10 cm s−1 sensitivity required for the detection and characterization of terrestrial exoplanets in or near habitable zones of Sun-like stars. The addition of low-level spectral contamination at variable effective velocity offsets introduces systematic noise when measuring velocities using classical mask-based or template-based cross-correlation techniques. Here we present simulations estimating the range of RV measurement error induced by uncorrected scattered sunlight contamination. We explore potential correction techniques, using both simultaneous spectrometer sky fibers and broadband imaging via coherent fiber imaging bundles, that could reliably reduce this source of error to below the photon-noise limit of typical stellar observations. We discuss the limitations of these simulations, the underlying assumptions, and mitigation mechanisms. We also present and discuss the components designed and built into the NEID (NN-EXPLORE Exoplanet Investigations with Doppler spectroscopy) precision RV instrument for the WIYN 3.5 m telescope, to serve as an ongoing resource for the community to explore and evaluate correction techniques. We emphasize that while "bright time" has been traditionally adequate for RV science, the goal of 10 cm s−1 precision on the most interesting exoplanetary systems may necessitate access to darker skies for these next-generation instruments
    corecore