81 research outputs found

    Effects of microperfusion in hepatic diffusion weighted imaging

    Get PDF
    Clinical hepatic diffusion weighted imaging (DWI) generally relies on mono-exponential diffusion. The aim was to demonstrate that mono-exponential diffusion in the liver is contaminated by microperfusion and that the bi-exponential model is required. Nineteen fasting healthy volunteers were examined with DWI (seven b-values) using fat suppression and respiratory triggering (1.5 T). Five different regions in the liver were analysed regarding the mono-exponentially fitted apparent diffusion coefficient (ADC), and the bi-exponential model: molecular diffusion (D (slow) ) microperfusion (D (fast) ) and the respective fractions (f (slow/fast)). Data were compared using ANOVA and Kruskal-Wallis tests. Simulations were performed by repeating our data analyses, using just the DWI series acquired with b-values approximating those of previous studies. Median mono-exponentially fitted ADCs varied significantly (P <0.001) between 1.107 and 1.423 x 10(-3) mm(2)/s for the five regions. Bi-exponential fitted D-slow varied between 0.923 and 1.062 x 10(-3) mm(2)/s without significant differences (P = 0.140). D (fast) varied significantly, between 17.8 and 46.8 x 10(-3) mm(2)/s (P <0.001). F-tests showed that the diffusion data fitted the bi-exponential model significantly better than the mono-exponential model (F > 21.4, P <0.010). These results were confirmed by the simulations. ADCs of normal liver tissue are significantly dependent on the measurement location because of substantial microperfusion contamination; therefore the bi-exponential model should be used. Diffusion weighted MR imaging helps clinicians to differentiate tumours by diffusion properties Fast moving water molecules experience microperfusion, slow molecules diffusion Hepatic diffusion should be measured by bi-exponential models to avoid microperfusion contamination Mono-exponential models are contaminated with microperfusion, resulting in apparent regional diffusion differences Bi-exponential models are necessary to measure diffusion and microperfusion in the liver

    Value of MRI and diffusion-weighted MRI for the diagnosis of locally recurrent rectal cancer

    Get PDF
    OBJECTIVES: To evaluate the accuracy of standard MRI, diffusion-weighted MRI (DWI) and fusion images for the diagnosis of locally recurrent rectal cancer in patients with a clinical suspicion of recurrence. METHODS: Forty-two patients with a clinical suspicion of recurrence underwent 1.5-T MRI consisting of standard T2-weighted FSE (3 planes) and an axial DWI (b0,500,1000). Two readers (R1,R2) independently scored the likelihood of recurrence; [1] on standard MRI, [2] on standard MRI+DWI, and [3] on T2-weighted+DWI fusion images. RESULTS: 19/42 patients had a local recurrence. R1 achieved an area under the ROC-curve (AUC) of 0.99, sensitivity 100% and specificity 83% on standard MRI versus 0.98, 100% and 91% after addition of DWI (p = 0.78). For R2 these figures were 0.87, 84% and 74% on standard MRI and 0.91, 89% and 83% with DWI (p = 0.09). Fusion images did not significantly improve the performance. Interobserver agreement was kappa0.69 for standard MRI, kappa0.82 for standard MRI+DWI and kappa0.84 for the fusion images. CONCLUSIONS: MRI is accurate for the diagnosis of locally recurrent rectal cancer in patients with a clinical suspicion of recurrence. Addition of DWI does not significantly improve its performance. However, with DWI specificity and interobserver agreement increase. Fusion images do not improve accuracy
    • …
    corecore