11,248 research outputs found
Simulation of Slow Light with Electronics Circuits
We present an electronic circuit which simulates wave propagation in
dispersive media. The circuit is an array of phase shifter composed of
operational amplifiers and can be described with a discretized version of
one-dimensional wave equation for envelopes. The group velocity can be changed
both spatially and temporarily. It is used to emulate slow light or stopped
light, which has been realized in a medium with electromagnetically induced
transparency (EIT). The group-velocity control of optical pulses is expected to
be a useful tool in the field of quantum information and communication.Comment: The following article has been submitted to the American Journal of
Physics. After it is published, it will be found at
http://scitation.aip.org/ajp (7 pages, 7 figures
Demonstration of negative group delays in a simple electronic circuit
We present a simple electronic circuit which produces negative group delays
for base-band pulses. When a band-limited pulse is applied as the input, a
forwarded pulse appears at the output. The negative group delays in lumped
systems share the same mechanism with the superluminal light propagation, which
is recently demonstrated in an absorption-free, anomalous dispersive medium
[Wang et al., Nature 406, 277 (2000)]. In this circuit, the advance time more
than twenty percent of the pulse width can easily be achieved. The time
constants, which can be in the order of seconds, is slow enough to be observed
with the naked eye by looking at the lamps driven by the pulses.Comment: 6pages,8 figure
Generation of photon pairs using polarization-dependent two-photon absorption
We propose a new method for generating photon pairs from coherent light using
polarization-dependent two-photon absorption. We study the photon statistics of
two orthogonally polarized modes by solving a master equation, and show that
when we prepare a coherent state in one polarization mode, photon pairs are
created in the other mode. The photon pairs have the same frequency as that of
the incident light.Comment: 4 pages, 3 figures, submitted to PR
- …
