3,201 research outputs found

    Can organic farming help to reduce N-losses? Experiences from Denmark

    Get PDF
    This study is in two parts. In the first part, nitrogen N)losses per unit of milk and meat in Danish conventional and organic pig and dairy farming were compared on the basis of farm data. In the second part, organic and conventional dairy farming were compared in detail, using modelling. N-surpluses at different livestock densities, fodder intensities, and soil types were simulated. Finally, simulated N-surpluses were used in national scenarios for conversion to organic dairy farming in Denmark. In Part one, pig farming was found to have a higher N-efficiency than dairy farming. Organic pig production had a lower N-efficiency and a higher N-surplus per kg meat than conventional pig production. The possibilities to reduce N-loss by conversion to organic pig production therefore appear to be poor. Organic dairy farming had a higher N-efficiency and a lower N-surplus per kg milk than conventional dairy farming. Conversion from conventional to organic dairy farming may therefore reduce N-losses. In Part two, a positive correlation between livestock density and N-surplus ha−1 was found for dairy farming. For all simulated livestock densities, fodder feeding intensities and soil types, organic systems showed a lower N-surplus per unit of milk produced than conventional systems. National scenarios for dairy farming showed that the present Danish milk production could be achieved with a 24% lower total N-surplus if converted from intensive conventional farming to extensive organic farming. At the same time, N-surplus ha−1 and N-surplus (tmilk) −1 would be lowered by 50% and 25%respectively. Changing from intensive to extensive conventional dairy farming with a livestock density equal to that in the organic scenario resulted in a reduction in N-surplus ha−1 of 15%. It was concluded that a reduction in total N-loss from agriculture is possible by converting from conventional to organic dairy farming but at the cost of either lower production on the present dairy farm area, or the current production on a substantially larger area

    Dårlig arrondering – konsekvenser for økologiske kvægbrug

    Get PDF
    En del økologiske bedrifter har betydelige jordarealer, som ligger uden direkte tilknytning til staldanlægget. Hvad det betyder for bedriftens produktion, næringsstofbalance og økonomi er undersøgt i et nyligt afsluttet FØJO III projekt. Det viser sig, at transportomkostningerne ikke altid kan modsvares af værdien af øget udbytte

    Catch Crops in Organic Farming Systems without Livestock Husbandry - Model Simulations

    Get PDF
    During the last years, an increasing number of stockless farms in Europe converted to organic farming practice without re-establishing a livestock. Due to the lack of animal manure as a nutrient input, the relocation and the external input of nutrients is limited in those organic cropping systems. The introduction of a one-year green manure fallow in a 4-year crop rotation, including clover-grass mixtures as a green manure crop is the classical strategy to solve at least some of the problems related to the missing livestock. The development of new crop rotations, including an extended use of catch crops and annual green manure (legumes) may be another possibility avoiding the economical loss during the fallow year. Modelling of the C and N turnover in the soil-plant-atmosphere system using the soil-plant-atmosphere model DAISY is one of the tools used for the development of new organic crop rotations. In this paper, we will present simulations based on a field experiment with incorporation of different catch crops. An important factor for the development of new crop rotations for stockless organic farming systems is the expected N mineralisation and immobilisation after incorporation of the plant materials. Therefore, special emphasise will be put on the simulation of N-mineralisation/-immobilisation and of soil microbial biomass N. Furthermore, particulate organic matter C and N as an indicator of remaining plant material under decomposition will be investigated

    Motor Performance as Risk Factor for Lower Extremity Injuries in Children

    Get PDF
    Purpose: Physical activity related injuries in children constitute a costly public health matter. The influence of motor performance on injury risk is unclear. The purpose was to examine if motor performance was a risk factor of traumatic and overuse lower extremity injuries in a normal population of children. Methods: This study included 1244 participants from 8 to 14-years-old at baseline, all participating in "the Childhood Health, Activity and Motor Performance School Study Denmark". The follow-up period was up to 15 months. The motor performance tests were static balance, single leg hop for distance, core stability tests, vertical jump, shuttle run, and a cardiorespiratory fitness test. Lower extremity injuries were registered by clinicians by weekly questionnaires and classified according to the ICD-10 system. Results: Poor balance increased risk for traumatic injury in the foot region (IRR=1.09-1.15), and good performance in single leg hop for distance protected against traumatic knee injuries (IRR=0.66-0.68). Good performance in core stability tests and vertical jump increased the risk for traumatic injuries in the foot region (IRR=1.12-1.16). Poor balance increased the risk for overuse injuries in the foot region (IRR=1.65), as did good performance in core stability tests and shuttle run, especially for knee injuries (IRR=1.07-1.18). Conclusions: Poor balance (sway) performance was a consistent predictor of traumatic injuries, in particular for traumatic ankle injuries. Good motor performance (core stability, vertical jump, shuttle run) was positively associated with traumatic and overuse injuries, and negatively (single leg hop) associated with traumatic injuries, indicating different influence on injury risk. Previous injury was a confounder affecting the effect size and the significance. More studies are needed to consolidate the findings, to clarify the influence of different performance tests on different types of injuries and to examine the influence of behaviour in relation to injury ris

    Modeling the ecology and evolution of communities: A review of past achievements, current efforts, and future promises

    Get PDF
    Background: The complexity and dynamical nature of community interactions make modeling a useful tool for understanding how communities develop over time and how they respond to external perturbations. Large community-evolution models (LCEMs) are particularly promising, since they can address both ecological and evolutionary questions, and can give rise to richly structured and diverse model communities. Questions: Which types of models have been used to study community structure and what are their key features and limitations? How do adaptations and/or invasions affect community formation? Which mechanisms promote diverse and table communities? What are the implications of LCEMs for management and conservation? What are the key challenges for future research? Models considered: Static models of community structure, demographic community models, and small and large community- evolution models. Conclusions: LCEMs encompass a variety of modeled traits and interactions, demographic dynamics, and evolutionary dynamics. They are able to reproduce empirical community structures. Already, they have generated new insights, such as the dual role of competition, which limits diversity through competitive exclusion, yet facilitates diversity through speciation. Other critical factors determining eventual community structure are the shape of trade-off functions, inclusion of adaptive foraging, and energy availability. A particularly interesting feature of LCEMs is that these models not only help to contrast outcomes of community formation via species assembly with those of community formation via gradual evolution and speciation, but that they can furthermore unify the underlying invasion processes and evolutionary processes into a single framework

    Realization of efficient quantum gates with a superconducting qubit-qutrit circuit

    Full text link
    Building a quantum computer is a daunting challenge since it requires good control but also good isolation from the environment to minimize decoherence. It is therefore important to realize quantum gates efficiently, using as few operations as possible, to reduce the amount of required control and operation time and thus improve the quantum state coherence. Here we propose a superconducting circuit for implementing a tunable system consisting of a qutrit coupled to two qubits. This system can efficiently accomplish various quantum information tasks, including generation of entanglement of the two qubits and conditional three-qubit quantum gates, such as the Toffoli and Fredkin gates. Furthermore, the system realizes a conditional geometric gate which may be used for holonomic (non-adiabatic) quantum computing. The efficiency, robustness and universality of the presented circuit makes it a promising candidate to serve as a building block for larger networks capable of performing involved quantum computational tasks.Comment: 27 pages including technical supplementary information, 9 figures, comments are most welcom
    corecore