2,219 research outputs found

    Resonant tunneling magnetoresistance in epitaxial metal-semiconductor heterostructures

    Full text link
    We report on resonant tunneling magnetoresistance via localized states through a ZnSe semiconducting barrier which can reverse the sign of the effective spin polarization of tunneling electrons. Experiments performed on Fe/ZnSe/Fe planar junctions have shown that positive, negative or even its sign-reversible magnetoresistance can be obtained, depending on the bias voltage, the energy of localized states in the ZnSe barrier and spatial symmetry. The averaging of conduction over all localized states in a junction under resonant condition is strongly detrimental to the magnetoresistance

    Future large-scale water-Cherenkov detector

    Full text link
    MEMPHYS (MEgaton Mass PHYSics) is a proposed large-scale water-Cherenkov experiment to be performed deep underground. It is dedicated to nucleon decay searches and the detection of neutrinos from supernovae, solar, and atmospheric neutrinos, as well as neutrinos from a future beam to measure the CP violating phase in the leptonic sector and the mass hierarchy. This paper provides an overview of the latest studies on the expected performance of MEMPHYS in view of detailed estimates of its physics reach, mainly concerning neutrino beams

    Study of the performance of a large scale water-Cherenkov detector (MEMPHYS)

    Full text link
    MEMPHYS (MEgaton Mass PHYSics) is a proposed large-scale water Cherenkov experiment to be performed deep underground. It is dedicated to nucleon decay searches, neutrinos from supernovae, solar and atmospheric neutrinos, as well as neutrinos from a future Super-Beam or Beta-Beam to measure the CP violating phase in the leptonic sector and the mass hierarchy. A full simulation of the detector has been performed to evaluate its performance for beam physics. The results are given in terms of "Migration Matrices" of reconstructed versus true neutrino energy, taking into account all the experimental effects.Comment: Updated after JCAP's referee's comment

    On the transient behavior of frictional melt during seismic slip

    Get PDF
    In a recent work on the problem of sliding surfaces under the presence of frictional melt (applying in particular to earthquake fault dynamics), we derived from first principles an expression for the steady state friction compatible with experimental observations. Building on the expressions of heat and mass balance obtained in the above study for this particular case of Stefan problem (phase transition with a migrating boundary) we propose here an extension providing the full time-dependent solution (including the weakening transient after pervasive melting has started, the effect of eventual steps in velocity and the final decelerating phase). A system of coupled equations is derived and solved numerically. The resulting transient friction and wear evolution yield a satisfactory fit (1) with experiments performed under variable sliding velocities (0.9-2 m/s) and different normal stresses (0.5-20 MPa) for various rock types and (2) with estimates of slip weakening obtained from observations on ancient seismogenic faults that host pseudotachylite (solidified melt). The model allows to extrapolate the experimentally observed frictional behavior to large normal stresses representative of the seismogenic Earth crust (up to 200 MPa), high slip rates (up to 9 m/s) and cases where melt extrusion is negligible. Though weakening distance and peak stress vary widely, the net breakdown energy appears to be essentially independent of either slip velocity and normal stress. In addition, the response to earthquake-like slip can be simulated, showing a rapid friction recovery when slip rate drops. We discuss the properties of energy dissipation, transient duration, velocity weakening, restrengthening in the decelerating final slip phase and the implications for earthquake source dynamics

    Hematocrit Values Predict Carotid Intimal-Media Thickness in Obese Patients With Non-Alcoholic Fatty Liver Disease: A Cross-Sectional Study

    Get PDF
    BACKGROUND: Literature data suggest with some criticism that full-fledged cardiovascular (CV) events (acute or chronic) are likely predicted by blood components, which are reported to be associated with the presence/severity of non-alcoholic fatty liver disease (NAFLD). This study was aimed at determining which marker(s) derived from blood count, such as white blood cells, neutrophils, neutrophil/lymphocyte ratio, platelet count, hemoglobin, mean corpuscular volume, hematocrit values were associated with ear or subclinical atherosclerosis, in obese patients of various classes suffering from NAFLD. METHODS: One hundred consecutive obese patients presenting NAFLD at ultrasound, with low prevalence of co-morbidities and no history or instrumental features of CV diseases, underwent carotid intima-media thickness (IMT) assessment by Doppler ultrasonography. All of them were studied taking into account anthropometric parameters, the metabolic profile, and inflammatory markers. RESULTS: White blood cells and neutrophil count showed no statistical association with IMT, which was predicted by the amount of visceral adiposity, as appreciated by ultrasonography. After adjusting for visceral adiposity and smoking status, only age and hematocrit contextually predicted early atherosclerosis, evaluated as IMT. Visceral adiposity was a confounding factor in foreseeing IMT. CONCLUSION: Hematocrit values along with the patient's age suggest an initial atherosclerosis, evaluated as IMT, and if this finding is confirmed in larger cohorts, could be added to other canonical CV risk factors. Inferences can be enhanced by future prospective studies that aim to identify the relationships between incident cardio-metabolic cases and this hematologic parameter

    Accessing scientific data through knowledge graphs with Ontop.

    Get PDF
    In this tutorial, we learn how to set up and exploit the virtual knowledge graph (VKG) approach to access data stored in relational legacy systems and to enrich such data with domain knowledge coming from different heterogeneous (biomedical) resources. The VKG approach is based on an ontology that describes a domain of interest in terms of a vocabulary familiar to the user and exposes a high-level conceptual view of the data. Users can access the data by exploiting the conceptual view, and in this way they do not need to be aware of low-level storage details. They can easily integrate ontologies coming from different sources and can obtain richer answers thanks to the interaction between data and domain knowledge

    MEMPHYS:A large scale water Cerenkov detector at Fr\'ejus

    Full text link
    A water \v{C}erenkov detector project, of megaton scale, to be installed in the Fr\'ejus underground site and dedicated to nucleon decay, neutrinos from supernovae, solar and atmospheric neutrinos, as well as neutrinos from a super-beam and/or a beta-beam coming from CERN, is presented and compared with competitor projects in Japan and in the USA. The performances of the European project are discussed, including the possibility to measure the mixing angle θ13\theta_{13} and the CP-violating phase δ\delta.Comment: 1+33 pages, 14 figures, Expression of Interest of MEMPHYS projec

    Increased Rotatory Laxity after Anterolateral Ligament Lesion in Anterior Cruciate Ligament- (ACL-) Deficient Knees: A Cadaveric Study with Noninvasive Inertial Sensors

    Get PDF
    The anterolateral ligament (ALL) has been suggested as an important secondary knee restrain on the dynamic laxity in anterior cruciate ligament- (ACL-) deficient knees. Nevertheless, its kinematical contribution to the pivot-shift (PS) phenomenon has not been clearly and objectively defined, and noninvasive sensor technology could give a crucial contribution in this direction. The aim of the present study was to quantify in vitro the PS phenomenon in order to investigate the differences between an ACL-deficient knee and an ACL+ALL-deficient knee. Ten fresh-frozen paired human cadaveric knees (n=20) were included in this controlled laboratory study. Intact, ACL-deficient, and ACL+ALL-deficient knees were subjected to a manual PS test quantified by a noninvasive triaxial accelerometer (KiRA, OrthoKey). Kinematic data (i.e., posterior acceleration of the tibial lateral compartment) were recorded and compared among the three statuses. Pairwise Student's t-test was used to compare the single groups (p<0.05). Intact knees, ACL-deficient knees, and ACL+ALL-deficient knees showed an acceleration of 5.3±2.1 m/s2, 6.3±2.3 m/s2, and 7.8±2.1 m/s2, respectively. Combined sectioning of ACL and ALL resulted in a statistically significant acceleration increase compared to both the intact state (p<0.01) and the ACL-deficient state (p<0.01). The acceleration increase determined by isolated ACL resection compared to the intact state was not statistically significant (p>0.05). The ALL sectioning increased the rotatory laxity during the PS after ACL sectioning as measured through a user-friendly, noninvasive triaxial accelerometer

    Conservation and Innovation: Versatile Roles for LRP4 in Nervous System Development.

    Get PDF
    As the nervous system develops, connections between neurons must form to enable efficient communication. This complex process of synaptic development requires the coordination of a series of intricate mechanisms between partner neurons to ensure pre- and postsynaptic differentiation. Many of these mechanisms employ transsynaptic signaling via essential secreted factors and cell surface receptors to promote each step of synaptic development. One such cell surface receptor, LRP4, has emerged as a synaptic organizer, playing a critical role in conveying extracellular signals to initiate diverse intracellular events during development. To date, LRP4 is largely known for its role in development of the mammalian neuromuscular junction, where it functions as a receptor for the synaptogenic signal Agrin to regulate synapse development. Recently however, LRP4 has emerged as a synapse organizer in the brain, where new functions for the protein continue to arise, adding further complexity to its already versatile roles. Additional findings indicate that LRP4 plays a role in disorders of the nervous system, including myasthenia gravis, amyotrophic lateral sclerosis, and Alzheimer\u27s disease, demonstrating the need for further study to understand disease etiology. This review will highlight our current knowledge of how LRP4 functions in the nervous system, focusing on the diverse developmental roles and different modes this essential cell surface protein uses to ensure the formation of robust synaptic connections

    Intra-abdominal Adiposity In Preterm Infants: An Explorative Study

    Get PDF
    Objective: The aim of the present study was to compare the total body fat mass and the intra-abdominal adipose tissue between preterm infants assessed at term corrected age and full-term newborns. Methods: An observational explorative study was conducted. 25 preterm and 10 full term infants were evaluated at 0-1 month of corrected and postnatal age, respectively. The total body fat mass was assessed by means of an air displacement plethysmography system (Pea Pod COSMED, USA) and the intra-abdominal adipose tissue by means of magnetic resonance imaging (software program SliceOMatic, Version 4.3,Tomovision, Canada). Results: Total body fat mass (g) of preterm and term infants was 633 (±183) and 538 (±203) respectively while intra-abdominal fat mass (g) was 14.2 (±4.9) and 19.9 (±11.4). Conclusions: Preterm infants, although exhibiting a total body fat mass higher than full term infants, do not show an increased intra-abdominal adipose tissue
    corecore