652 research outputs found

    Which biomarker predicts benefit from EGFR-TKI treatment for patients with lung cancer?

    Get PDF
    Subsets of patients with non-small cell lung cancer respond remarkably well to small molecule tyrosine kinase inhibitors (TKI) specific for epidermal growth factor receptor (EGFR) such as gefitinib or erlotinib. In 2004, it was found that EGFR mutations occurring in the kinase domain are strongly associated with EGFR-TKI sensitivity. However, subsequent studies revealed that this relationship was not perfect and various predictive markers have been reported. These include EGFR gene copy numbers, status of ligands for EGFR, changes in other HER family genes or molecules downstream to EGFR including KRAS or AKT. In this review, we would like to review current knowledge of predictive factors for EGFR-TKI. As all but one phase III trials failed to show a survival advantage of the treatment arm involving EGFR-TKIs, it is necessary to select patients by these biomarkers in future clinical trials. Through these efforts, it would be possible to individualise EGFR-TKI treatment for patients suffering from lung cancer

    EGFR T790M Mutation as a Possible Target for Immunotherapy; Identification of HLA-A*0201-Restricted T Cell Epitopes Derived from the EGFR T790M Mutation

    Get PDF
    Treatment with epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs), such as gefitinib and erlotinib, has achieved high clinical response rates in patients with non–small cell lung cancers (NSCLCs). However, over time, most tumors develop acquired resistance to EGFR-TKIs, which is associated with the secondary EGFR T790M resistance mutation in about half the cases. Currently there are no effective treatment options for patients with this resistance mutation. Here we identified two novel HLA-A*0201 (A2)-restricted T cell epitopes containing the mutated methionine residue of the EGFR T790M mutation, T790M-5 (MQLMPFGCLL) and T790M-7 (LIMQLMPFGCL), as potential targets for EGFR-TKI-resistant patients. When peripheral blood cells were repeatedly stimulated in vitro with these two peptides and assessed by antigen-specific IFN-γ secretion, T cell lines responsive to T790M-5 and T790M-7 were established in 5 of 6 (83%) and 3 of 6 (50%) healthy donors, respectively. Additionally, the T790M-5- and T790M-7-specific T cell lines displayed an MHC class I-restricted reactivity against NSCLC cell lines expressing both HLA-A2 and the T790M mutation. Interestingly, the NSCLC patients with antigen-specific T cell responses to these epitopes showed a significantly less frequency of EGFR-T790M mutation than those without them [1 of 7 (14%) vs 9 of 15 (60%); chi-squared test, p = 0.0449], indicating the negative correlation between the immune responses to the EGFR-T790M-derived epitopes and the presence of EGFR-T790M mutation in NSCLC patients. This finding could possibly be explained by the hypothesis that immune responses to the mutated neo-antigens derived from T790M might prevent the emergence of tumor cell variants with the T790M resistance mutation in NSCLC patients during EGFR-TKI treatment. Together, our results suggest that the identified T cell epitopes might provide a novel immunotherapeutic approach for prevention and/or treatment of EGFR-TKI resistance with the secondary EGFR T790M resistance mutation in NSCLC patients

    Cyclin D1 overexpression is an indicator of poor prognosis in resectable non-small cell lung cancer

    Get PDF
    Cyclin D1 is one of the G1 cyclins that control cell cycle progression by allowing G1 to S transition. Overexpression of cyclin D1 has been postulated to play an important role in the development of human cancers. We have investigated the correlation between cyclin D1 overexpression and known clinicopathological factors and also its prognostic implication on resected non-small-cell lung cancer (NSCLC) patients. Formalin-fixed and paraffin-embedded tumour tissues resected from 69 NSCLC patients between stages I and IIIa were immunohistochemically examined to detect altered cyclin D1 expression. Twenty-four cases (34.8%) revealed positive immunoreactivity for cyclin D1. Cyclin D1 overexpression is significantly higher in patients with lymph node metastasis (50.0% vs 14.4%, P = 0.002) and with advanced pathological stages (I, 10%; II, 53.8%; IIIa, 41.7%, P = 0.048; stage I vs II, IIIa, P = 0.006). Twenty-four patients with cyclin D1-positive immunoreactivity revealed a significantly shorter overall survival than the patients with negativity (24.0 ± 3.9 months vs 50.1 ± 6.4 months, P = 0.0299). Among 33 patients between stages I and II, nine patients with cyclin D1-positive immunoreactivity had a much shorter overall survival (29.7 ± 6.1 months vs 74.6 ± 8.6 months, P = 0.0066). These results suggest that cyclin D1 overexpression is involved in tumorigenesis of NSCLCs from early stage and could be a predictive molecular marker for poor prognosis in resectable NSCLC patients, which may help us to choose proper therapeutic modalities after resection of the tumor. © 1999 Cancer Research Campaig

    Readministration of gefitinib in a responder after treatment discontinuation due to gefinitib-related interstitial lung disease: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Gefitinib is a new molecular-targeted agent for the treatment of patients with advanced non-small cell lung cancer that fail to respond to conventional chemotherapy. Gefitinib is considered to be well tolerated and less toxic compared with conventional cytotoxic drugs. However, interstitial lung disease (ILD) has been reported as a serious adverse effect. The precise management of a gefitinib responder having severe adverse events remains unknown.</p> <p>Case Presentation</p> <p>We report the case of gefitinib readministration in a patient with lung adenocarcinoma who had once responded but in whom treatment had to be discontinued owing to gefinitib-related ILD. A dramatic response was achieved both at the time of initial treatment (250 mg/day) and at readministration of gefitinib (125 mg/day). The effectiveness of gefitinib therapy in our patient could be explained in part by the presence of an activating mutation of epidermal growth factor receptor (<it>EGFR</it>) gene, L858R in exon 21, which was identified in the primary tumor.</p> <p>Conclusion</p> <p>A reduced dose of gefitinib might be sufficient for patients having tumors with <it>EGFR </it>gene mutations, and that the currently approved dose may be excessively potent in some of these patients, thus resulting in the onset of adverse events.</p

    Epidermal growth factor receptor kinase domain mutations are rare in salivary gland carcinomas

    Get PDF
    Activating mutations within the epidermal growth factor (EGFR) tyrosine kinase domain identify non-small cell lung cancer patients with improved clinical response to tyrosine kinase inhibitor therapy. Recently, we identified two EGFR mutations in a cohort of 25 salivary gland carcinomas (SGCs) by screening the tumour samples for the both most common hotspot mutations in exons 19 and 21 by allele-specific PCR. Here, we present a comprehensive sequencing analysis of the entire critical EGFR tyrosine kinase domain in 65 SGC of the main histopathological types. We found EGFR mutations in the tyrosine kinase domain to be a rare event in SGCs. No additional mutations other than the two known exon 19 deletions (c.2235_2249del15) in a mucoepidermoid carcinoma and an adenoid cystic carcinoma have been detected. Other putative predictive markers for EGFR-targeted therapy in SGCs might be relevant and should be investigated
    corecore