452 research outputs found

    Active Thermal Extraction and Temperature Sensing of Near-field Thermal Radiation

    Get PDF
    Recently, we proposed an active thermal extraction (ATX) scheme that enables thermally populated surface phonon polaritons to escape into the far-field. The concept is based on a fluorescence upconversion process that also occurs in laser cooling of solids (LCS). Here, we present a generalized analysis of our scheme using the theoretical framework for LCS. We show that both LCS and ATX can be described with the same mathematical formalism by replacing the electron-phonon coupling parameter in LCS with the electron-photon coupling parameter in ATX. Using this framework, we compare the ideal efficiency and power extracted for the two schemes and examine the parasitic loss mechanisms. This work advances the application of ATX to manipulate near-field thermal radiation for applications such as temperature sensing and active radiative cooling

    Active Thermal Extraction of Near-field Thermal Radiation

    Get PDF
    Radiative heat transport between materials supporting surface-phonon polaritons is greatly enhanced when the materials are placed at subwavelength separation as a result of the contribution of near-field surface modes. However, the enhancement is limited to small separations due to the evanescent decay of the surface waves. In this work, we propose and numerically demonstrate an active scheme to extract these modes to the far field. Our approach exploits the monochromatic nature of near-field thermal radiation to drive a transition in a laser gain medium, which, when coupled with external optical pumping, allows the resonant surface mode to be emitted into the far field. Our study demonstrates an approach to manipulate thermal radiation that could find applications in thermal management

    Thermal rectification effects of multiple semiconductor quantum dot junctions

    Full text link
    Based on the multiple energy level Anderson model, this study theoretically examines the thermoelectric effects of semiconductor quantum dots (QDs) in the nonlinear response regime. The charge and heat currents in the sequential tunneling process are calculated by using the Keldysh Green's function technique. Results show that the thermal rectification effect can be observed in a multiple QD junction system, whereas the tunneling rate, size fluctuation, and location distribution of QD significantly influence the rectification efficiency.Comment: 5 pages, 8figure

    Systematic evaluation of psychometric characteristics of the michigan alcoholism screening test 13-Item short (SMAST) and 10-Item brief (BMAST) versions

    Get PDF
    The psychometric properties of the Michigan Alcohol Screening Test (MAST) 13-item short (SMAST) and 10-item brief (BMAST) versions were aggregated and synthesized across 40 and 21 studies, respectively. Results for reliability, validity, and nonclinical descriptive statistics were reported separately for the SMAST and BMAST, and implications for counseling practice and research were discussed.WOS:000455237000002Scopus - Affiliation ID: 60105072Social Sciences Citation IndexQ3 - Q4ArticleUluslararası işbirliği ile yapılan - EVETOcak2019YÖK - 2018-1

    Active Thermal Extraction and Temperature Sensing of Near-field Thermal Radiation

    Get PDF
    Recently, we proposed an active thermal extraction (ATX) scheme that enables thermally populated surface phonon polaritons to escape into the far-field. The concept is based on a fluorescence upconversion process that also occurs in laser cooling of solids (LCS). Here, we present a generalized analysis of our scheme using the theoretical framework for LCS. We show that both LCS and ATX can be described with the same mathematical formalism by replacing the electron-phonon coupling parameter in LCS with the electron-photon coupling parameter in ATX. Using this framework, we compare the ideal efficiency and power extracted for the two schemes and examine the parasitic loss mechanisms. This work advances the application of ATX to manipulate near-field thermal radiation for applications such as temperature sensing and active radiative cooling

    Quantum Computation of Finite-Temperature Static and Dynamical Properties of Spin Systems Using Quantum Imaginary Time Evolution

    Get PDF
    Developing scalable quantum algorithms to study finite-temperature physics of quantum many-body systems has attracted considerable interest due to recent advancements in quantum hardware. However, such algorithms in their present form require resources that exceed the capabilities of current quantum computers except for a limited range of system sizes and observables. Here, we report calculations of finite-temperature properties including energies, static and dynamical correlation functions, and excitation spectra of spin Hamiltonians with up to four sites on five-qubit IBM Quantum devices. These calculations are performed using the quantum imaginary time evolution (QITE) algorithm and made possible by several algorithmic improvements, including a method to exploit symmetries that reduces the quantum resources required by QITE, circuit optimization procedures to reduce circuit depth, and error mitigation techniques to improve the quality of raw hardware data. Our work demonstrates that the ansatz-independent QITE algorithm is capable of computing diverse finite-temperature observables on near-term quantum devices

    Quantum Computation of Finite-Temperature Static and Dynamical Properties of Spin Systems Using Quantum Imaginary Time Evolution

    Get PDF
    Developing scalable quantum algorithms to study finite-temperature physics of quantum many-body systems has attracted considerable interest due to recent advancements in quantum hardware. However, such algorithms in their present form require resources that exceed the capabilities of current quantum computers except for a limited range of system sizes and observables. Here, we report calculations of finite-temperature properties, including energy, static and dynamical correlation functions, and excitation spectra of spin systems with up to four sites on five-qubit IBM Quantum devices. These calculations are performed using the quantum imaginary time evolution (QITE) algorithm and made possible by several algorithmic improvements, including a method to exploit symmetries that reduces the quantum resources required by QITE, circuit optimization procedures to reduce circuit depth, and error-mitigation techniques to improve the quality of raw hardware data. Our work demonstrates that the ansatz-independent QITE algorithm is capable of computing diverse finite-temperature observables on near-term quantum devices

    Nonlinear Photoelasticity to Explicate Acoustic Dephasing Dynamics

    Get PDF
    Detection and controlling of acoustic (AC) phonon phase have been strenuous tasks although such capability is crucial for further manipulating thermal properties. Here, we present a versatile formalism for tracing AC nanowaves with arbitrary strain compositions by incorporating the nonlinear photoelasticity (PE) into ultrafast acoustics where broad AC spectrum encompassing thermally important THz frequency range should be collected far beyond Brillouin frequency. The initial AC phase upon displacive carrier generation could be inherently varied depending on the bipolar AC compositions by implementing externally biased piezoelectric diodes. The importance of adopting nonlinear PE is then manifested from the transient phase shift either abrupt at the point of diffuse surface scattering or gradual during phonon-phonon or phonon-electron scattering events based on which the ratio of nonlinear to linear PE coefficient is experimentally extracted as a function of the detection probe energy, reaching 0.98 slightly below the bandgap. As the probing energy is rather set away from the bandgap, AC phase is completely invariant with any scattering events, exhibiting the conventional trend at Brillouin frequency in linear regime. Under potent influence of nonlinear PE, the AC dephasing time during the propagation are quantified as a function of AC wavepacket size and further correlated with intrinsic and extrinsic AC scattering mechanisms in electron reservoir
    corecore